BASIC INFORMATION

<table>
<thead>
<tr>
<th>Project Classification:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsoring CANEUS Work</td>
</tr>
<tr>
<td>Program Board:</td>
</tr>
<tr>
<td>Tracking Number:</td>
</tr>
<tr>
<td>POC Email:</td>
</tr>
<tr>
<td>POC Phone:</td>
</tr>
</tbody>
</table>

PROJECT DESCRIPTION

Problem Statement:
Elimination of wiring harnesses for sensors used in:
- Structural health monitoring - exploration vehicles
- Diagnosis of airframe aging and damage
- Distributed wireless sensor monitoring (T, P, etc.)

Ability to utilize existing flight qualified sensors wirelessly with qualification of a single interface.

Approach/Solution:
SAW sensor-RFID tag devices:
- Passive wireless link to external sensors
- Work with a wide variety of sensors
- Unique device identification code
- High data density (> 32 bits)
- Link to AE sensors - structural health monitoring
- High processing gain and S/N
- Range 10x that of conventional SAW RFID tags

Required Technologies/Facilities:
- ASR&D SAW tag and electronics prototyping
- Need: Antenna development
- Application engineering/system integration

Affected Applications:
- End users interested in eliminating wiring
- Application engineering

BACKGROUND

Milestone TRL Risk Measure of Success TRL Date

Deliverables:
- Current Phase I NASA SBIR program:
 - Demonstrate sensor-RFID tag technical feasibility
 - Analyze external sensors
 - Evaluate impedance transformation techniques
 - Design, fabricate and test SAW sensor-RFID tags
 - Demonstrate wired and wireless operation
 - Evaluate performance and range

- Follow-on work - TBD

Outreach/Organizational Interfaces:

Academic Contribution/Work Force Needs:

Business Development and Regulatory Compliance:

PROJECT EXECUTION

ROM Cost

<table>
<thead>
<tr>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Team Members and Roles:

Potential Funding Sources:

Business Case:

Business Impact: