NOORUL ISLAM CENTRE FOR HIGHER EDUCATION (NOORUL ISLAM UNIVERSITY)

GENERIC NANO-SATELLITE FOR MONITORING FLOODS, LANDSLIDES AND FOREST FIRES (CONCEPT PAPER PROPOSAL)

Rohith I.J.

Prof.M.Krishnaswamy

Ganesan R.

Project Director NIUSAT

NIUSAT STUDENT NANOSATELLITE IS UNIQUE?

ALL SUB-SYSTEMS ARE HAVING REDUNDANTANCY

International workshop on SSTDM, IISc Bangaluru, India

Why NIUSAT is a Generic Satellite . . .

- > NIUSAT is configured as bus module and payload module
- The bus module can support any payload with size <300x300x150mm and power requirement of about 10 to 15watts
- Flexible attitude control accuracy from 0.5 deg to <10 arc sec</p>
- Fully redundant for all the bus systems(Power, TTC, AOCS & RF systems)
- Functionally co-located systems (Solar panel, Battery, & Power Electronics in single panel)
- Provision for PPT/any other thrusters for orbit maintenance and deorbiting
- > Use of Cube sat standard modules for all subsystems
- **>** Fully accessible to any of the subsystems for any problems

PROPOSED CONCEPT

- Realization of suitable nano sensors for monitoring of the disasters like Floods
 - Landslides

Forest fire (SWIR)

Constellation (SAR Camera Resolution:<20m)

- > Selection of suitable spectral bands and spatial resolution
- Generic Nano satellite configuration
- Nano satellite constellation for global coverage
- Summary of Constellation options
- Possible collaborations

International workshop on SSTDM, IISc Bangaluru, India

PROPOSED SPECTRAL BANDS AND POSSIBLE APPLICATIONS

Possible applications
Provides the best data for mapping depth-detail of water-covered areas. It is also used for soil- vegetation discrimination and forest mapping.
The blue-green region of the spectrum corresponds to the chlorophyll absorption of healthy vegetation and is useful for mapping detail such as depth or sediment in water bodies.
Chlorophyll absorbs these wavelengths in healthy vegetation. Hence, this band is useful for distinguishing plant species.
Forest fire detection. This region is also sensitive to plant water content, which is a useful measure in studies of vegetation health. This band is also used for distinguishing clouds, snow, and ice.

Internatio

PROPOSED RGB CAMERA

s	Sr No	PARAMETER	Values
	1	Ground sample distance(GSD)(m)	30
	2	Co∨erage area (Km)	61.4 × 61.4
	3	Spectral band (µm)	B(0.42—0.51), G (0.49-0.59) & R (0.58- 0.67)
	4	Saturation Radiance (mW/cm2-sr-µm)	B: 53; G: 53; R: 47
	5	Integration time (μs)	130
	6	Quantization (bits)	8
	7	SNR at saturation	> 100
	8	Operating freq (MHz)	100
	9	Altitude	600
	10	Pixel size (μm)	5.5
	11	Frame (pixels)	2048 × 2048
	12	Effective focal length (mm)	110
	13	F/#	4
ernational workshop o	on SSTDM,	iffend golf Wilewig (°)	8.4

22-04-2014

PROPOSED SWIR CAMERA

Sr No	PARAMETER	Values
1	Ground sample distance (GSD) (m)	120
2	Co∨erage area (Km)	76.8 x 61.4
3	Spectral band (µm)	1.55-1.7
4	Saturation Radiance (mW/cm2-sr-µm)	7.5
5	Integration time (µs)	140
6	Quantization (bits)	8
7	SNR at saturation	> 150
8	Altitude	600
9	Pixel size (µm)	25
10	Frame (pixels)	640x512
11	Effective focal length (mm)	125
12	F/#	4
13	Field of view (°)	9.4

7

22-04-2014

BASIC BLOCK DIAGRAM OF NIUSAT CAMERA

FEATURES OF NIUSAT NANO SATELLITE

Structure/Thermal/Mechanism

- Overall size: 274 x 274 x 195mm3
- Mass: < 15 kg
- Structure mass: 3.8 kg
- Solar Panel Deployment Mechanism
- Antenna Deployment Mechanism
- Passive and Active Thermal Control System

Payload

- WIDEFIELD SENSOR (4 band)
- Resolution : 35m at 600km altitude
- Swath: 140 km
- Quantisation : 12 bit
- Input Data Rate: 28 Mbps
- Data Compression : JPEG 2000
- Output Data Rate : 1 Mbps

Mission

- Polar Sun Synchronous Orbit
- Orbit altitude : 560 880 km
- Orbital inclination : 97°-99°
- Orbital Period : 96-100 min
- Repetivity/ Revisit : Everyday
- Visibility: 4 orbits per day International Workshop on SSTDM, IISc Bangaluru, Indiand orbit correction

Communication System

- HKTM data transmitter in UHF (420-450 MHz) band
- Tele-Command receiver in VHF (144-148 MHz) band
- Payload data transmission in S- band (2240MHz).
- monopole Antenna for UHF/VHF for data transmission & reception
- High gain patch antenna for S-band transmitter

- 3 axis attitude Stabilized configuration
 - Sun sensors, Magnetometers and MEMS Gyroscopes
 - Magnetic Torquer and 4 Nos of Micro Reaction Wheel
 - Control Algorithm residing in OBC
 - STAR SENSOR and PPT provision kept for fine pointing

Power

- Total Power Generation : ~40 W
- Battery Capacity (2 nos.): 5AH
- Multi Junction Solar Cells based Solar Arrav
- Stowed during launch and deployed in Orbit
- MPPT based Battery Charge Regulator

On Board Computer

- High performance dual core 32 bit E200 Power Architecture
- 2 MB Code flash memory with ECC
- 32 GB storage flash for payload data storage
- Supports I²C, CAN and UART ports
- Supports software tunes and WDT

Ground Station

- UHF Downlink and VHF Uplink antennae
- 3 meter reflector S-band antenna for payload data reception
- Mission Control Centre
- Payload Data Processing Centre
- Auto tracking Using TLE/ OD Data

FUNCTIONAL BLOCK DIAGRAM OF NIUSAT

STRUCTURAL LAYOUT OF NIUSAT WITH MULTISPECTRAL CAMERA

STRUCTURAL LAYOUT OF NIUSAT

NIUSAT WITH MULTISPECTRAL CAMERA MOUNTED ON TOP DECK

International workshop on SSTDM, IISc Bangaluru, India

13

S-BAND, UHF/VHF ANTENNA AT NIU

International workshop on SSTDM, IISc Bangaluru, India

Sensors and Constellation options

Proposed sensor options for the constellation

- > 2 medium resolution (30m,4bands) optical imaging satellite
- > 1 high resolution (5m) optical imaging satellite
- > 1 SAR (10-20m resolution) imaging satellite

Constellation options

► 4 satellites in a single plane (24 passes per day)

PROPOSED NANO SATELLITE CONSTELLATIONS Ground Trace of One Satellite (24 hrs)

No. of contacts with ground station in one day: 6 passes

Duration of Access time with ground station: 60mins

International workshop on SSTDM, IISc Bangaluru, India

16

Ground Trace of 4 Satellites in Single Plane (24 hrs)

No. of contacts with ground station in one day: 24 passes (4No.of satellitex6pass)

Duration of Access of 1 satellite with ground station: 60mins Total Access time of 4 satellites with ground station: 240mins

17

Ground Trace of 5 Satellites in Single Plane (24 hrs)

No. of contacts with ground station in one day: 30 passes (5No.of satellitex6pass)

Duration of Access of 1 satellite with ground station: 60mins 18 Total Access fime of 5 satellites with ground station: 300mins (4.5hrs) 22-04-2014

Ground Trace of 10 Satellites in Single Plane (24 hrs)

No. of contacts with ground station in one day: 60 passes (10No.of satellitex6pass)

Duration of Access of 1 satellite with ground station: 60mins 19 Total Access time of 10 satellites with ground station: 593.8mins (9.8hrs)-04-2014

Ground Trace of 6 Satellites in Two Planes (24 hrs)

No. of contacts with ground station in one day: 36 passes (18AM & 18PM)

Duration of Access of 1 satellite with ground station: 60.12mins 20 Total Access time of 6 satellites with ground station: 360.72mins (6.012hrs)¹⁴

Ground Trace of 8 Satellites in Two Planes (24 hrs)

No. of contacts with ground station in one day: 48 passes (24AM & 24PM)

Duration of Access of 1 satellite with ground station: 60.12mins 21 Total Access time of 8 satellites with ground station: 480.96mins (8.01 hrs) 2014

Summary of Constellation options

Proposed sensor options for the constellation

- > 2 medium resolution (30m,4bands) optical imaging satellite
- > 1 high resolution (5m) optical imaging satellite
- > 1 SAR (10-20m resolution) imaging satellite

Constellation options

- ► 4 satellites in a single plane (24 passes per day)
- ► 5 satellites in a single plane (30 passes per day)
- ▶ 10 satellites in a single plane (60 passes per day)
- ► 6 satellites in a two planes (36 passes per day)
- ▶ 8 satellites in a two planes (48 passes per day)

PRESENT STATUS OF NIUSAT.....

ALL SUB-SYSTEMS ARE IN BOARD-LEVEL TESTING...

PAYLOAD IS IN PDR LEVEL

International workshop on SSTDM, IISc Bangaluru, India

Possible Collaborations.....

Joint development of

- > High resolution optical payload
- > High resolution SAR payload
- > High resolution hyper spectral payload
- Specification and configuration can be worked out based on the DMC requirements
- Generic NIUSAT Bus can be offered for any payload upto 5Kg mass and 10W average power

Thank you

International workshop on SSTDM, IISc Bangaluru, India