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Rk Mission: provide state-of-the-art integrated water cycle modeling
tools to support research, explore environmental solutions, and to
provide highly reliable information to decision makers

@ We address pressing issues including how water availability will
change in response to climate change and a diminishing snowpack;
how resources will vary in response to climate oscillations; and how
the frequency of hydrologic extremes such as flooding and drought
will affect resources.

R A key component of the Center’s research uses data from NASA’s
GRACE (Gravity Recovery and Climate Experiment) mission to
track changes in freshwater availability in large aquifers and river
basins.
Q UCCHM
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Presentation Overview

SRRSO
The Gravity Recovery and Climate Experiment (GRACE) Satellite Mission

GRACE for:
1. Observations of Regional Water Storage Change

2. Groundwater Estimates
3. Characterizing Hydrological Extremes

Use of GRACE data in land surface models

Future?

1. GRACE contributions for monitoring terrestrial water cycle, climatic extremes,
and water/disaster management

Q UCCHM
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NASA Gravity Recovery and Climate Experiment (GRACE

e Launched in 2002

* GRACE maps the Earth's gravity fields by making
accurate measurements of the distance between the two
satellites, using GPS and a microwave ranging system.



The two GRACE satellites
themselves act in unison as the
primary instrument.

Changes in the distance between
the twin satellites are used to make
gravitational field measurements.
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Estimating water storage changes with GRACE

Volume Anomaly km?

The difference between two GRACE global gravity fields yields a time-variable component.
The main contributors to time variations in the gravity field are changes in water storage in the ocean, the
atmosphere and on land.
Why? Because water is REALLY HEAVY!
Consequently, the GRACE time-variable signal on land is dominated by changes in terrestrial water storage,
I.e. GRACE monitors changes in all of the water stored on land, the change in total water storage

(all of the snow, surface waters, soil moisture and groundwater), at monthly and longer timescales
Given the extremely high precision of GRACE, the resulting errors are ~1.5 cm for monthly storage
anomalies at the 150,000 km? scale (~2.25 km?3)

Mass in millimeters of water thickness

2003 2004 2005 2008 2007 2008 2008 2010 2091 2012 2013 2014
Time 2010 (January-February-March average) to mid 2011 (March-April-May average)

from Boening et al., 2012
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Mean gravity field + monthly maps of the time-
variable gravity field useful tools for scientists as
they study the Earth’s changing climate:

*The mean gravity field helps scientists better understand
the structure of the solid Earth and learn about ocean
circulation.

*Scientists use time-variable gravity to study ground
water fluctuations, seaice, sea level rise, deep ocean
currents, ocean bottom pressure, and ocean heat flux.

GRACE is like a giant scale in the
sky that tells you how much weight
you’ve gained or lost each month
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Estimating water storage changes with GRACE cont.

2002-04
WE Thickness (cm)

GRACE is unique in its ability to detect variations in all
components of water storage, no matter the depth

@ UCCHM
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Estimating water storage changes with GRACE cont.

Inter-annual variations and emerqging trends from GRACE, 2003-2012

Annual Amplitude (mm) Trend (mm/yr.)

rend CSR-ALOS, 20037012, &5, 250k jrmemiye)

Famiglietti et al., 2013

* First global look at magnitude of water storage variations
* Reveal important information on storage that is typically not captured by models: glacial melt, reservoir release,
groundwater mining, etc.
« Amplitude is a measure of water cycle strength and variability
 Important trends emerging
 Data are ripe for understanding hydro-climatological variations, for understanding human impacts, for
data assimilation, for pointing to model enhancements, and for informing sustainable water management

@ UCCHM

University of California
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Estimating water storage changes with GRACE cont.

Inter-annual variations and emerging trends in large river basins 2003-2011

AAAAAAAA
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Estimating groundwater storage changes with GRACE

ASLAND

AS; anp = ASgnow T ASgw + ASgy + ASgyy

ASGW: ASLAND } ASSNOW } ASSW - ASSM

groundwater
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January 2003

Bourzac, 2013; after Rodell et al., 2009;
Famiglietti et al. 2011; Voss et al., 2013
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GRACE: Potential for flood prediction

GRACE-based
Flood Index Maxima
May, 2007

Sper = Smax — S(t-1)

F(t) = Ppon(t) — Sper

Recorded floods,
Dartmouth Flood

Observatory,
May, 2007

Quantity of incoming water that cannot enter storage for the current month based on the
regionally observed storage anomaly maxima

Reager and Famiglietti, 2009

CANEUS SSTDM 2014



An example of water cycle change from GRACE
Increasing Extremes in California

Sacramenio-San Joagun Bawn GRACE TWEA, Apr 2002-Dec 2012
50,

Monthly changes in total
water storage
Average changes in total " |

2003 2004 3008 2008

Sacramento-San Joaquin (Swenson): GRACE Deficits (3MonSm) Apri

Negative deviations Y. \ e \WM A/ W \ / \

from average water /| J\
u |

storage conditons
T Deficit=T WbA monthly chmatology (1 WbA)

Water Storage Deficits (km’)

2003 2004 2005 006 008 09
Years

Thomas et al., 2014
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GRACE: Potential for drought monitoring
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Implications for Water Resources

R The severity metric ( ) 1s most associated with reports of

widespread, catastrophic meteorological drought.

3-month SPI

| GRACE identified Water Storage Deficits ™ 3-month Standard Precipitation Index (negative only)

Water Storage Deficits
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Groundwater use in the Colorado

River Basin during drought
(2005-2013)

Wyoming
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Castle et al. 2014, in review
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Using GRACE for Calibration, Validation, Model Diagnostics and

Improvement
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Simulated groundwater, soil
moisture, and snow water
equivalent for the
Mississippi river basin for
(A) open loop

(B) GRACE assimilation.

Daily observed groundwater
and monthly GRACE-
derived TWS anomalies.

GRACE and modeled TWS
are adjusted to a common
mean, as are observed and
modeled groundwater.



@f GRACE-Based Shallow Groundwater Drought Indicator

March 24, 2014

March 24, 2014

@ GRACE-Based Root Zone Soil Moisture Drought Indicator

T 7 1 T T T T e——
Vininess Percantile http://drought.unl.edu/Monitoring Tools/NASAGRACEDataAssimilation.aspx

T 7 I I T TT—
Vintnass Peroantile http://drought.unl.edu/Monitol

“Qjlation.aspx

Houborg et al 2012
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9 Central Valley, California 9 Southern High Plains Aquifer (3] Houston, Texas
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A short list of how GRACE can help with water and water
management issues in climate models

-SARO

Amplitude: Variability, extremes, changing storage

Trend: climate change, human water management

Calibration: residence times, baseflow

Understanding and parameterization of process: persistence of
anomalies, changes 1n active layer thickness, effective storage

Water balance closure: independent estimates of river discharge,
evapotranspiration, and groundwater storage

Data assimilation: large-scale constraints, model-based downscaling
Predictive capability: significant memory in certain regions, perhaps
due to more slowly changing groundwater storage

Feedbacks: e.g. to water management practices like irrigation
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Summary

Tremendous information content in the GRACE data for improving climate and
hydrologic prediction

Contributions to improved understanding of how terrestrial water storage responds
to climate change and variability

Capturing amplitude is important for predicting extremes and inter-annual variability

Reproducing trends is important to capturing climate change and human signal of
water management

Lots and lots of work to be done on climate models in terms of datasets of unknown
properties, key natural and human water cycle components not yet parameterized,
multi-sensor assimilation, etc.

‘Doing hydrology backwards’ — in a good way -- thanks to availability of GRACE

Exposing the importance of groundwater, both natural and managed
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GraviTY RECOVERY AND

Crimate ExperimenT (GRACE)
Key Spacecraft Components

Now that we have an idea how GRACE works, let’s peer
“under the hood” of this high-tech wonder and
understand some of the component parts of GRACE.
These components can be seen in the photos on pages
2 and 4; the letters following the name of each
component in parentheses correspond to the labels on
the diagrams below each photo.

DA

K-band Ranging System (KBR). Provides precise
(within 10 pm) measurements of the distance change
between the two satellites needed to measure
fluctuations in gravity.

Ultra Stable Oscillator (USO). Provides
frequency generation for the K-band ranging system.

SuperSTAR Accelorometers (ACC). Precisely
measures the non-gravitational accelerations acting on
the satellite.

Star Camera Assembly (SCA). Precisely
determines the two satellites’ orientation by tracking
them relative to the position of the stars.

Coarse Earth and Sun Sensor (CES). Provides
omnidirectional, reliable, and robust, but fairly coarse,
Earth and Sun tracking. Used during initial acquisition
and whenever GRACE operates in safe mode.

Center of Mass Trim Assembly (MTA). Precisely
measures the offset between the satellite’s center of
mass and the “acceleration-proof” mass and adjusts
center of mass as needed during the flight.

Black-Jack GPS Receiver and Instrument
Processing Unit (GPS). Provides digital signal
processing; measures the distance change relative to
the GPS satellite constellation.

Globalstar Silicon Solar Cell Arrays (GSA).
Covers the outer shell of the spacecraft and generates

gﬁ‘W’E I.
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GRACE Mission Data Flow
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State space: catchment scale
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FiG. 5. Ensemble smoother. Consider one subbasin with two snow-free CLSM tiles and
three ensemble members. For simplicity, root zone excess moisture is not included in this
schematic. [1] One-month forecast ensemble integration without assimilation. Store catch-
ment deficit for the 5th, 15th, and 25th of the month. [2] Calculate model prediction of
GRACE observation—M,[X%._]—by converting stored catchment deficit values into basin-
scale, time-average TWS. [3] Use Eq. (1) to compute analysis increments for catchment
deficits on the 1st of the month (state vector X%). [4] Integrate CLSM again from the 1st of
the month and apply analysis increments evenly distributed over all days of the month.
[5] Proceed with ensemble forecast and repeat proges;
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Using GRACE for Calibrating LSM Groundwater Depth

(a) Water Table Depth

-8 L 1 | 1 L
2003 2003.5 2004 2004.5 2005 2005.5 2006

(b) Total Water Storage Anomalies
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R, = 0 (total water storage calibration alone)
R, = 1 (base flow calibration alone)
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