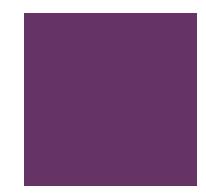


Wireless Sensor Network for Detecting Disasters

Dr. Maneesha Ramesh, Director & Professor Amrita Cenetr for Wireless Networks and Applications, Amrita Vishwa Vidyapeetham


maneesha@amrita.edu

CANEUS SSTDM 2014

Disasters

- Between 2000 and 2012, natural disasters caused
 - \$1.7 trillion in damage
 - affected 2.9 billion people
 - 1.1 million people were killed
- Worldwide in 2011, there were
 - 154 floods,
 - 16 droughts, and
 - 15 cases of extreme temperature
- 2012 → natural disaster damage exceeding \$100 billion.

Disasters

- Floods
 - the most widespread natural disaster
- Earthquakes:
 - cause associated destruction of man-made structures
 - instigate other natural disasters such as tsunamis, avalanches, and landslides
- Hurricanes
 - coupled with storm surges and sever flooding
- Landslides
 - often accompany earthquakes, floods, storm surges, hurricanes, wildfires, or volcanic activity
 - often damaging and deadly than the triggering event

Monitoring Techniques

- Large Scale Monitoring (Macro)
 - Satellite Systems
 - Remote Sensing
 - Mobile Vehicle Based Sensing
- Site Specific Monitoring (Micro)
 - Wireless Sensor Network
 - Mobile Computing
- Participatory Sensing/Monitoring
 - Mobile Phone
 - Participants participation

- Area of Monitoring
- Frequency of Monitoring
- Knowledge of Location
- Uncertanity

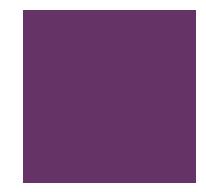
Disasters Vs. Parameters

Disasters

- Landslide
- Flood
- Drought
- Hurricane
- Storms
- Avalanche
- Forest Fire
- Earthquake

Parameters

- Rainfall
- Moisture
- WaterLevel
- Wind
- Movement
- Temperature
- Humidity
- Vibration

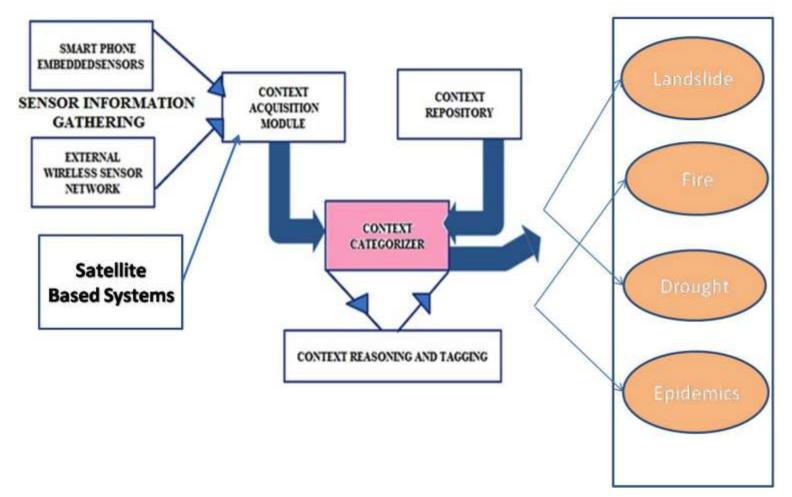

Requirements for Monitoring

Sub Systems

- Sensors
- Data Collection Techniques
- Data Aggregation Techniques
- Real-time Communication Technology
- Complex Data Analysis
- Multiple methods for detection
- Alert Dissemination

Required Functionalities

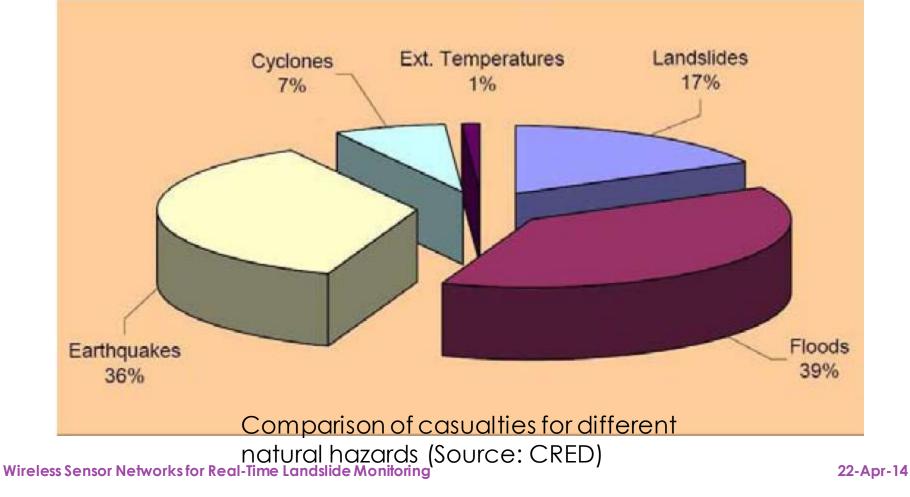
- Long Term Monitoring
- Network Lifetime Extension
- FaultTolerant Communication Technology
- Heterogeneous Data Aggregation, Analysis
- Multi-path for Alert Dissemination



Major disasters instigate other multiple types of disasters

CANEUS SSTDM 2014

Ubiquitious Mult-Context Model


Wireless Sensor Network for Monitoring and Detection of Landslides

Amrita University

CANEUS SSTDM 2014

Introduction

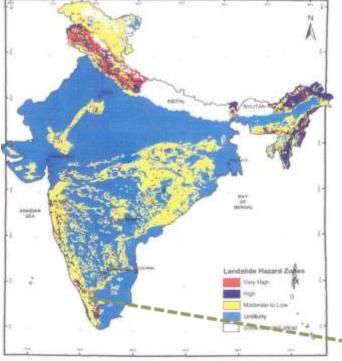
Environmental Disasters: Landslides are the third most deadly natural disaster on earth

CANEUS SSTDM 2014

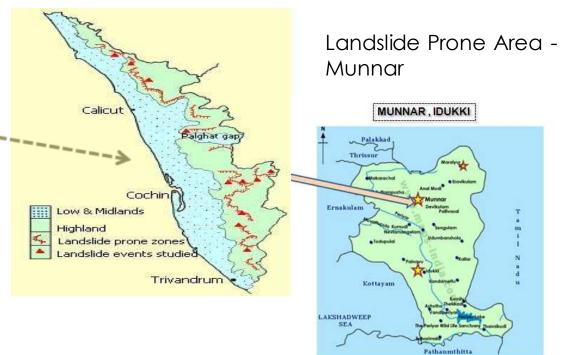
Penvironmental disasters are largely unpredictable and occur within very short spans of time.

- Wireless sensors are one of the cutting edge technologies that can quickly respond to
 - Rapid changes of data,
 - Process data, and
 - Transmit the sensed data
- Limitations include
 - relatively low amounts of battery power and
 - low memory availability compared to many existing technologies
- Main advantage: Deploying sensors in hostile environments with a bare minimum of maintenance.

Maneesha V Ramesh, AMRITA University

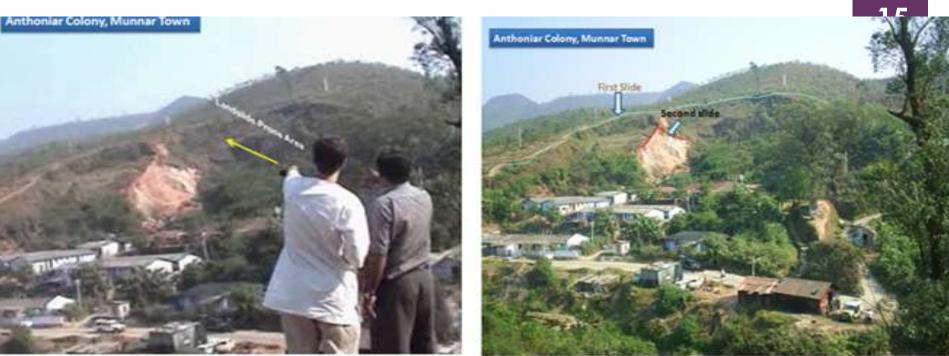

Major Outcomes

- "World's first ever comprehensive wireless sensor network for landslide detection"-AMRITA wireless sensor network for landslide detection
- "India's first ever landslide laboratory set up for landslide detection"-AMRITA landslide laboratory set up for landslide detection


12

Landslides

- The rapid down-slope movement of soil, rock and organic materials under the influence of gravity.
 - Short-lived and suddenly occurring phenomena
 - Causes extraordinary landscape changes and
 - destruction of life and property
- In India,
 - Landslides mainly happen due to the heavy rainfall.
 - Annual loss due to landslides equivalent to \$400 million
- This study concentrates on *rainfall induced landslides*


Landslide Risk Zones in Kerala

Maneesha V Ramesh, AMRITA University

4/22/2014

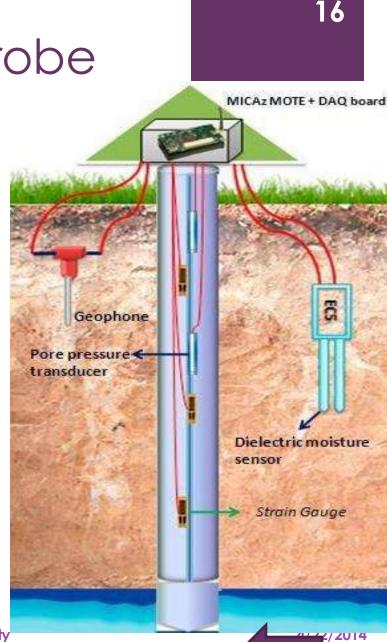
14

Anthoniar Colony is located 700 meters Northwest of Munnar town. Two levels of slide were observed at Anthoniar Colony.

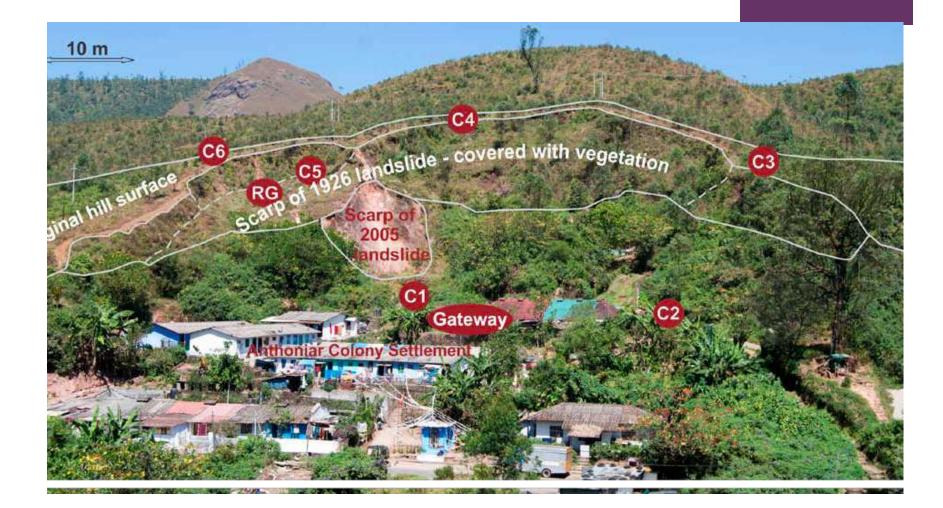
•The first one occurred in 1926.

•It was a massive landslide with an estimated volume of 10⁵ m³.

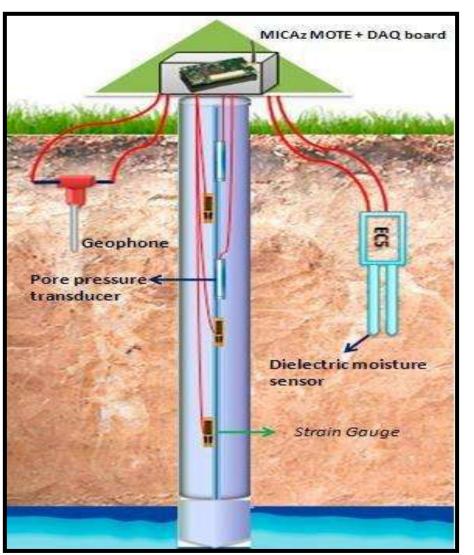
•The scarp has a concave curvature.


•The second landslide occurred on 26 July 2005.

•It was a complex rotational slide–debris flow with a volume of approximately 10⁴ m³ and was triggered by a torrential downpour.

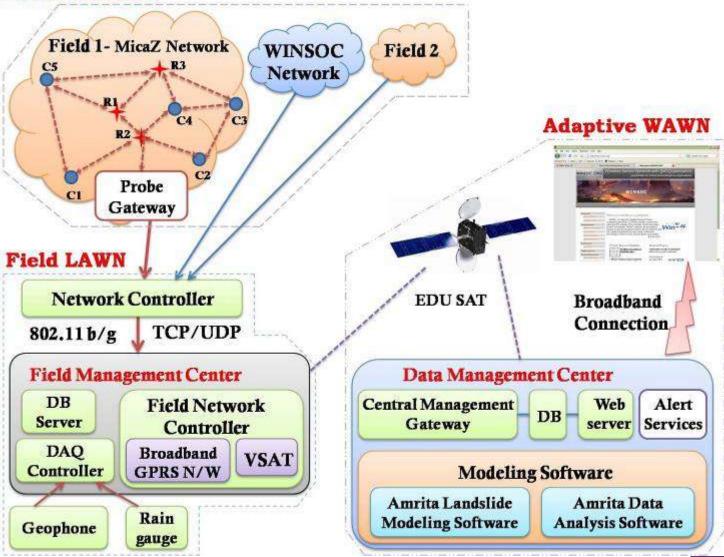

•The total rainfall recorded in Munnar on 26 July 2005 was 451mm. The same downpour also triggered two other landslides in the vicinity Maneesha V Ramesh, AMRITA University 4/22/2014

Wireless Deep Earth Probe


- Geophysical sensors
 - Wired
 - High Maintanence
- Wireless Sensor Networks
 - Commercially available wireless sensor nodes do not have the geophysical sensors such as
 - Raingauge
 - Moisture sensor
 - Pore pressure sensor
 - Strain gauge
 - Tilt meter
 - Geophone
- Geophysical sensors are interfaced with the wireless sensor node through an
 - Interfacing circuit
 - Data acquisition board Maneesha V Ramesh, AMRITA University

Locations of the Deep Earth Prob (DEPs) and Rain Gauge (RG)

WSN Monitoring & Warning Syst 24/7 operational Landslide Monitoring & Detection


 20 Deep Earth Probes (DEPs) (maximum 23 meter deep)

18

- 150 geophysical sensors deployed
 - Pore Pressure transducers
 - Strain gauges
 - Tilt meters
 - Dielectric moisture sensor
 - Geophone
 - Rain gauge
- 20 wireless sensor nodes

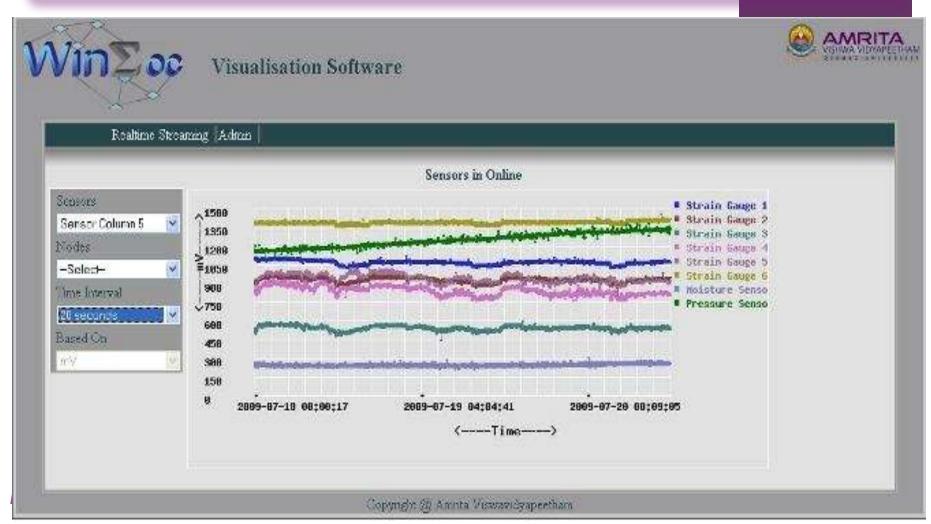
Overall System Architecture

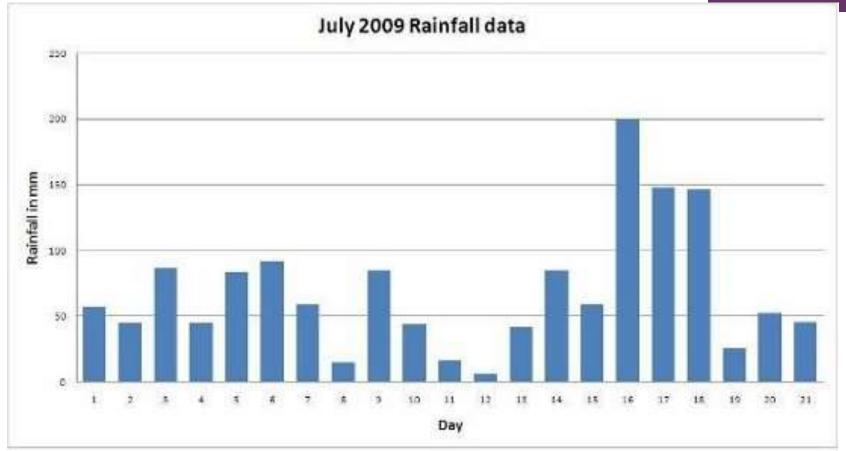
Probe Network

Warning system

- Real-time Data Analysis Three Level Warning System
 - Warning 1: Threshold level of rain gauge & dielectric moisture sensor
 - Warning 2: Threshold level of pore pressure transducer
 - Warning 3: Detection of movement initiation
- Landslide Modeling Software
- Landslide Laboratory Setup

Design of Feedback System


- Remote administering,
 - the sampling rate of the geological sensors
 - with respect to real-time climatic variations,
 - monitor the level of battery charges,
 - monitor the level of solar charging rate,
 - indicate faulty wireless sensor nodes or geological sensors etc.



First Landslide Warning Issued in July 2009

CANEUS SSTDM 2014

Landslide Warning Issued

Landslide Warning Issued

- July 21, 2009
- Heavy rain fall
- Increase in pore pressure
- Slight movements
- Rainfall threshold exceeded with respect to Caine (1980)

$I = 14.82D^{-0.39}$

4/22/2014

Landslide laboratory set up

Maneesha V Ramesh

CANEUS SSTDM 2014

Medium scale laboratory set up

- Medium Scale Laboratory Set up
 - 2m long by 1 meter wide by 0.5 m tall and holds around 0.6 m³ of soil
 - Slope angle can be varied from 0 degree to 45 degree
 - Rainfall Simulator Accurate raindrop size distribution and velocity

Maneesha V Ramesh

Large scale landslide laboratory set

- 4.6 m long by 2.6 m wide by 2 m tall
- designed to hold approximately 12 m³ of soil.
- up to 24 tone's of soil can be tested, at a maximum depth of up to 4 feet
- Slope angle can be varied from 0 degree to 45 degree
- Rainfall Simulator Accurate raindrop size distribution
- Seepage Simulator Various infiltration rate

Funding Agencies

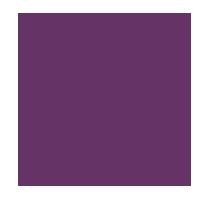
- Partially funded by the WINSOC project, a Specific Targeted Research Project (Contact Number 003914) co-funded by the INFSO DG of the European Commission within the RTD activities of the Thematic Priority Information Society Technologies
 - 11 partners from 8 different countries
- Partially funded by Department of Information Technology (DIT), India with the project title as "Wireless Sensor Network for Real-time Landsldie Monitoring"
- Partially funded by Department of Science and Technology (DST), India with the project title as "Monitoring and Detection of Rainfall Induced Landslide using an Integrated Wireless Network System"
- Partially funded by Ministry of Earth Science (MoES), India with the project title as "Advancing Integrated Wireless Sensor Networks for Real-time Monitoring and Detection of Disasters"

Publications

- Maneesha Vinodini Ramesh, "Design, Development, and Deployment of a Wireless Sensor Network for Detection of Landslides", Ad Hoc Networks, Elsevier, 2012
- Maneesha Ramesh & Nirmala Vasudevan (2011) The Deployment of Deep Earth Sensor Probes for Landslide Detection, Landslides, DOI 10.1007/s10346-011-0300-x, Springer Verlag, US (In Press), 21 September 2011
- Maneesha Ramesh, Real-Time Wireless Sensor Network for Landslide Detection, Third International Conference on Sensor Technologies and Applications (SENSORCOMM 2009) in Athens, Greece. (BEST PAPER AWARD)

Publications Continued

- "Wireless Geophone Network for Remote Monitoring and Detection of Landslides", by Abishek. T. K, Maneesha. V. Ramesh, ICCSP 2011, Calicut India, IEEE Xplore.
- A complete chapter named "Wireless Sensor Networks for Disaster Management" for the book titled "Wireless Sensor Networks" published by INTECH.
- "Signal Processing for Wireless Geophone Network to Detect Landslides" has been accepted", Abishek T.K, Dr.Maneesha V. Ramesh & Vijayan Selvan, ICCAEI 2010, Malaysia.
- "Integrating Geophone Network to Real-Time Wireless Sensor Network System for Landslide Detection", by Abishek T. K and Dr.Maneesha V. Ramesh. in the SENSORCOMM 2010 conference (published in IEEE Xplore)
- "Lightweight Management Framework (LMF) for a Heterogeneous Wireless Network for Landslide Detection" by Sangeeth Kumar & Dr.Maneesha V, Ramesh, at the International conference on Wireless & Mobile Networks, WiMoN 2010 (published in lecture series of Springer)


Publications Continued

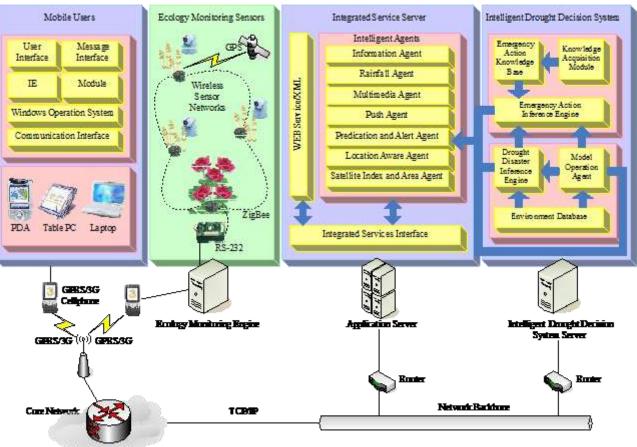
- "Wireless Sensor Network Localization With Imprecise Measurements Using Only a Quadratic Solver", by Maneesha V. Ramesh & K. P. Soman.
- Wireless Sensor Network for Landslide Detection, Maneesha V. Ramesh, Sangeeth Kumar, and P. Venkat Rangan
- Real Time Landslide Monitoring viaWireless Sensor Network, M.V. Ramesh, N. Vasudevan, and J. Freeman
- Factors and Approaches towards Energy Optimized Wireless Sensor Networks to Detect Rainfall Induced Landslides, Maneesha V. Ramesh, Rehna Raj, Joshua Udar Freeman, Sangeeth Kumar, P. Venkat Rangan
- Fault Tolerant Clustering Approaches in Wireless Sensor Network for Landslide Are Monitoring Rehana raj T, Maneesha V Ramesh, Sangeeth Kumar
- Threshold Based Data Aggregation Algorithm To Detect Rainfall Induced Landslide, Maneesha V. Ramesh P. V. Ushakumari
- "Biologically Inspired Data Propagation and Aggregation Method for Wireless Sensor Networks. J. Freeman1, M.V. Ramesh2, and A. Mohan1

Research Initiatives

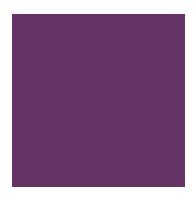
- The State Government & Disaster Management Departments has requested us to expand the wireless sensor network installation to other landslide prone areas in future major regions all over India:
 - 🗆 Maharashtra State,
 - 🗆 Kerala State,
 - □ the North Eastern region, and
 - □ the Himalayan region

Drought Forecast and Alert System [2]

Drought

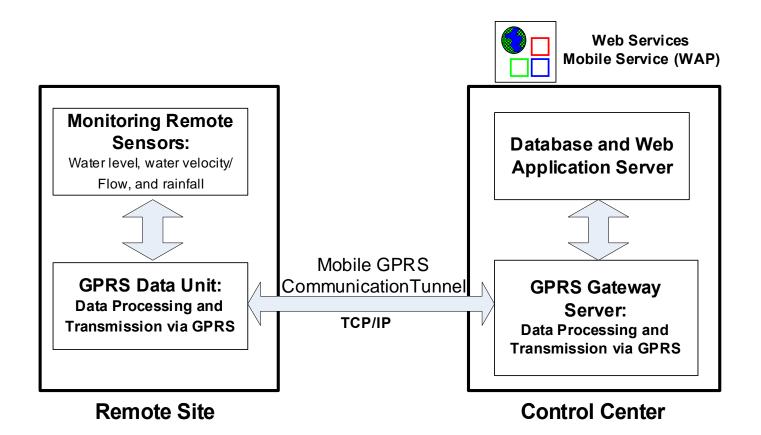

- Meteorological drought refers to the drought caused by abnormal climate and maladjusted rainfall.
- Hydrological drought indicates that there is no enough water supply for various applications due to water shortage in ground surface, such as lower water level of river or reservoir.
- Agricultural drought indicates that crops cannot grow normally due to insufficient soil moisture caused by water shortage within a certain period of time.
- Therefore, DFAS takes the rainfall and soil moisture as major variables for drought identification and monitoring covering meteorological and agricul-tural drought.

DFAS

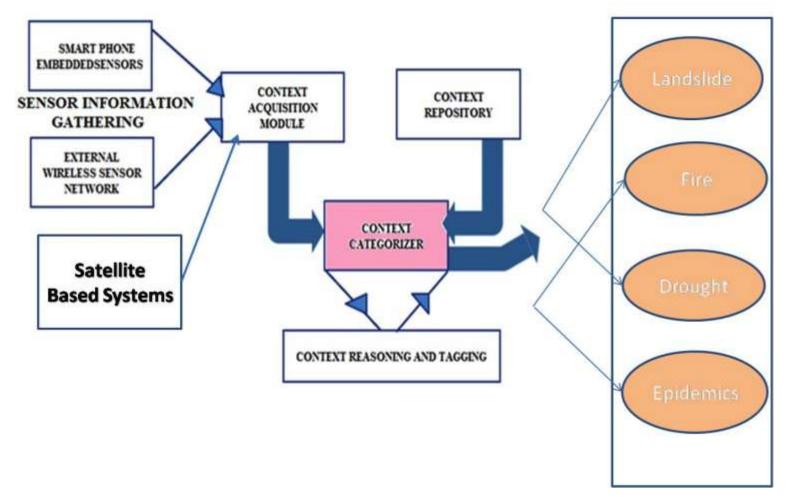

- identification and monitoring of meteorological and agricultural drought
- Major Parameters and Sensors
- Rainfall → Rainfall sensor
- Moisture \rightarrow soil moisture sensor

Drought forecast and alert system and network architecture

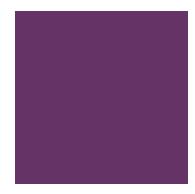
GERS/3G Galeway


Real-time flood monitoring and warning system

Sensing Parameters

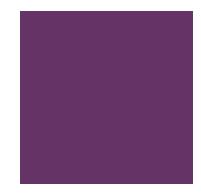

- The system for real-time monitoring of water conditions:
 - water level
 - flow
 - precipitation level
- This system was developed to be employed in monitoring flood in Nakhon Si Thammarat, a southern province in Thailand

Architecture

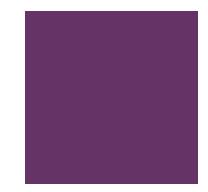


Ubiquitious Mult-Context Model

Requirements Multi--Context System


- Context Aware System
- Location Based System
- Context Classification
- Heterogeneous Data Aggregation
- Adaptive Alert System

Monitor and Detect major disasters


Monitor and Detect other multiple types of disasters instigated by the major disaster

CANEUS SSTDM 2014

References

- 1. <u>https://www.dosomething.org/actnow/tipsand</u> tools/11-facts-about-disasters
- 2. <u>http://www.iis.sinica.edu.tw/JISE/2006/200607_0</u> <u>3.pdf</u>
- 3. http://rdo.psu.ac.th/sjstweb/journal/33-2/0125-3395-33-2-227-235.pdf

Thank You

CANEUS SSTDM 2014