

ELECTROOPTICAL PAYLOADS FOR EARTH AND PLANETARY OBSERVATION

Electro-optical Imaging Systems Developed By ISRO - Synopsis

Sensors developed to observe earth (land, ocean, atmosphere) and moon from space in various wavelength bands

Optics

Mechanical structures

AWiFS

Detectors

6K SWIR Detector

6K VNIR CCD (191A)

4/22/2014

6K VNIR CCD (191A)

CANEUS SSTDM 2014

Payload Electronics

- •detector drive signals (Bias and clocks)
- •analog and digital processing of detector output
- •On-board calibration electronics
- •Timing and control signal generation
- •Onboard data processing like Non Uniformity Correction (NUC)
- •Power supply for all payload electronics systems
- •Interface to data handling, Tele-command, Telemetry and Raw bus 6

Resource Monitoring

4/22/2014

7

Bhaskara

- ✓ First Remote sensing camera on satellite
 - Spin stabilized satellite,
 - Super Vidicon TV cameras (area detector)
 - Mechanical & electronic shutters
 - High voltage circuitry (14KV)
 - Slow readout of Vidicon with precision current sources
 - Low noise video processing, 400Kbps data rate, contiguous pictures
 - Discrete components based CMOS logic, ADC etc.

IGOV-1Km, Swath-400Km 2 Bands

IRS-1A/B:Quantum jump in resource observation

- First operational satellite designed for resource monitoring
- Circular sun synchronous polar orbit, 3-axis stabilized satellite
- Resolution improved from 1Km to 36.5m, Data rate -26Mbps
- Solid state technology (2048 element, 13µ pixel CCD)
 - Better SNR & radiometric accuracy, reduced complexity
- Band wise modular architecture to survive single point failures.
- CCD based imaging technology mastered & quantization (7 bit) limited noise systems achieved
- Phased readout of CCD to minimize hardware
- ✓ LS/STTL devices used meet speed
- Non-space grade ICS like Op-amps, clock driver, ADC, analog switch used after in house qualification.
- ✓ S & X band Tx systems developed.

4/22/2014

Development helped in understanding the sensitivities of band to band registration.

Occasional radiometric jump & blooming at few places understood & corrected in subsequent payloads

The overall data quality was very good

ANEUS SSTDM 2014

IRS-1C/D

Three tier imaging capability

- WiFS : Coarse resolution (188m) & wide swath(700Km)
- LISS-3: Medium resolution (23.5m in VNIR,70m in SWIR),swath:140Km
- PAN: High resolution (5.8m) & swath 70Km)

Challenges

- ≻ WiFS
- ✓ Indigenous lens design & development
- > Dark signal issues, large signal levels & data rate matching
 - Resolved by combination of optical along track alignment and line sampling
- PAN-First time development of 3mirror off-axis un-obscured reflective telescope
 - $\checkmark\,$ Swath achieved with three 7µm pixel, 4000 element CCDs
 - ✓ Steering mechanism (±26°) for faster revisit & stereo
 - $\checkmark\,$ Optical bias of CCDs to improve the charge transfer
 - ✓ FTTL for high speed logic , Data rate increased (85Mbps)
- ✓ In house qualified high-speed Op-amps (GBW: 350MHz), ADC
 4/22/2014 (20Msps) & precision switch, etc. to meet speed

10

4/22/2014

IRS-1C/D

LISS-3

- 6K element high capacity low noise CCD developed for (VNIR)
 - Challenges in electrical interfacing to realize proper PAM signal met
- First time, SWIR band realized with InGaAs detector (2100 element, 26 µ pixel, staggered)
 - ✓ Complex detector- development a challenge
 - ✓ Vidicon mode of operation-new CE to meet complex signal processing

Blooming problems avoided with large dynamic range detectors

 Caused overdrive of signal processors at high illumination resulting in phase reversal of Op-amp and high current conditions
 Resolved by incorporating anti-blooming control at CCD and high-speed clipping circuits in video chain

 BBR and thermo-mechanical stability

 Structures of PAN & LISS-3 realized by milling them from large Invar forgings with weight reduction techniques

The spacecraft was considered best in civilian remote sensing

RESOURCESAT-1

Follow on of IRS-IC/D PAN enhanced to Multi-spectral (LISS-4) LISS-3 (SWIR) improved to 23.5m ground resolution AWiFS realized with 70m ground resolution, 4 bands (B2,B3,B4, B5) and 10 bit radiometric data

RESOURCESAT-2

Improved urban planningMapping

- ► National security
- >Crop discrimination & yield
- >Precision Farming
- ➤Forestry
 - >Disaster management

LISS-4

 ✓ Improved contrast, 100% albedo with single gain
 ✓ Full 70Km data (23Km in RS-1) Transmitted

Data compression (Tx-105Mbps) ✓ DPCM for LISS-4 and LISS-3 with 10 bit radiometric resolution ✓ MLG (AWiFS) to enhance radiometric accuracy (12 bit) at low illuminations

Miniaturization

RESOURCESAT	1	2
Total Cards	131	46
Packages	29	12
Volume (in ³)	11296	3082
Weight (Kg)	107	32
/P&/&&I4(W)	223	180

OCEANOGRAPHY SENSORS

OCM -1/2

- Sea & land imaging
- Large dynamic range & low signal from sea
- Large atmospheric path radiance (ocean -20%, atmosphere-80%), radiance contamination due to sun-glint
- Narrow spectral bandwidth
- 6K detector with large charge handling capacity + exposure control & anti-blooming control
- Atmosphere correction B7 & B8
- ✓ Sun glint (season & global)
- Dealt by ±20° tilt mechanism
- Light weight structure
- NESR< 1.08µW.cm⁻²sr⁻¹µm⁻¹ @1x1Km2 resolution

4/22/2014

- Spatial footprint:360m-Best in its class
- Swath 1420 Kms, 2 day repeativity
- 8 spectral bands
- Large FOV (±43°) met with telecentric lens

Sensor detected radiance =

Raleigh path radiance (molecular scattering) +

Aerosol path radiance (aerosol scattering) +

Water leaving radiance x Atmospheric transmittance

✓ True 12 bit digitization (first time)

- Noise modeled, apportioned & controlled
- Achieved photon noise limited performance
- Band wise separate lens, filter, detector and electronics to maximize performance
- Lens barrel material selected to compensate CTE of Lens back focal length

✓ On-board calibration

- Low noise current controlled LED source
- Exposure selection for 16 levels
- NIST traceable uniform source for radiometric calibration on ground
- In-situ ocean measurements for validating sensor calibration after launch.

CARTOGRAPHY SENSORS

TES

Cartosat 1

Cartosat 2 17

TES

- Challenges associated with HR sensors
- (a) Signal strength
- (b) Large focal length requirements
- (c) Diffraction limit of optics
- (d) Large data rate
- (e) Platform stability
- ✓ High resolution Camera
- 560mm on-axis RC telescope (F/7)
- Required speed 6x PAN met by velocity reduction + IRS- PAN camera electronics
- First time complex satellite slewing technology tried

IGFOV (m) @560Km	:1
Swath(Km)	>14
SNR @ Saturation	>128
SWR @ Nyquist	>0.16
Data rate(Mbps)	: 2*85

Short development time - 1 year

CARTOSAT-1

- ✓ First Real time stereo imaging
- Two fore & aft. PAN cameras (500-850 nm)
- ✓ Better than 2.5 m resolution
- Swath 27.5 km for stereo and 55 km for monoscopic mode

✓ across track tilt to give better revisit

New technologies

- ✓ 500mm dia TMA optics for large FOV(±1.08⁰)
 - Mirrors polish:λ/80 accuracy
 - Iso-static mirror mounts
 - Matching of mechanical/ thermal/ opto-mechanical properties
 - Light weighted Invar structure (EO module weight 250Kg)
- 12000 element CCD, Focal plane CCD drive Electronics near to detector
- Video processor processing within 200ns, (100% albedo). Digital double sampler designed with 12Bit ADC(40Msps) & current feedback Op-amps Digital logic, 105MHz Tx -First time ECL logic for timing & interface Transmission limit of 105Mbit/s, onboard 3.2:1 data compression (338 Mbit/s)

The data products software development was a major milestone. Best quality Digital elevation data realized in the world.

CARTOSAT-2

- ✓ Indigenous large mirrors (50% light weighted 700mm dia)
- ✓ Light weight CFRP structure(39Kg) & kinematic mirror mount
- ✓ Compact f/8 system-Ritchey-Chretien on-axis Telescope
- ✓ Model for telescope performance developed. Assembled in 1g conditions to meet operations in zero gravity
- \checkmark Stresses minimized, optics surface finish of $\lambda/50$ maintained
- ✓ Thermal control of large size P/L difficult task (better thermo-mechanical performance)
- ✓ Agile spacecraft- designed around payload
- ✓ Carto-2-Jan 2007

- Carto- 2A-April 2008
- ✓ Carto- 2B July 2010

- Better than 1m resolution
- 10 Km swath
- Step & stare technology
- Linear push broom array
- 10 bits

Cartosat-2 image of Mobil (USA)

Cartosat-2 image of Karnataka Vidhana Soudha

space Instrumentation for Weather monitoring

Weather Satellites

CANEUS SSTDM 2014

Weather monitoring- INSAT 2A/2B/2E/3A & Kalpana

Very High Resolution from GEO orbit

- ✓ Large spectral range, multi-band
 - Reflective telescope + dichroic beam splitters
 - Oversampling (electronics)- improve contrast at Nyquist
- ✓ Long dwell time
 - Multiple detectors used
- $\checkmark Large \ FOV 24^\circ \ x18^\circ$ (full globe +)
 - Whiskbroom configuration with 2 Axis electromechanical scanning
 - Programmable scanning -selected area
 - Complex, accurate, synchronous scan mechanism developed for long life
 - Select materials & torque for Thermomechanical stability
- ✓ IR detector -Cooling
 - Passive cooler realized- 90K

- Cloud picture
- •Sea surface temperature
- •Wind
- •Vertical temperature profile
- •Vertical humidity profile and its horizontal positional distribution
- •Total Ozone and its vertical profile
 •Aerosol density and its vertical profile
- •Trace constituents and their vertical profiles

Development of coolers, temperature sensor integration for very low_temperature operation was an uphill task 23

Challenges in weather monitoring instruments

- ✓ Large background
 - Cold view beyond earth
 - Black body view
 - ✓ High resolution ADC
 - 14 bit dynamic range & accuracy achieved by ingeniously using 10 bit ADC
- ✓ Small signals (pA, nV)
 - Very low noise bridge preamplifiers
 - High gain trans-impedance amplifiers

Data processing & display of VHRR data achieved after accounting for ✓ scan mirror position ✓ Spacecraft attitude ✓ Sensor non-uniformities ✓ Earth's sphericity & oblateness

VHRR (INSAT-3A, **KALPANA**) Thermal IR **WVP** Vis 5.7-7.1um 10.5-12.5um 0.55-0.75um NEdT/SNR: 6 @2.5% Albedo 0.5K(@300K) 0.25K (@300K) Dynamic Range: 100% Albedo WVP and TIR: 4K-340K Spatial Resolution: 2 Km 8 Km 8 Km

 INSAT-3A /2E upgraded with SWIR channel (1Km resolution) for monitoring cloud, snow delineation, forest fire detection etc.

INSAT 2E, 3A & Kalpana additionally have water vapour channels

INSAT-3D Challenges

- Improvements in Imager resolution
- 18 narrow IR channels in sounder (measurement of vertical profile of CO2, water vapour, Ozone etc.) Hardware was realized in same volume

New technologies

- ✓ Filter wheel at 200K & shaft at 0-40°C
- ✓ 14 bit ADC to meet large dynamic range
 - Realized chain noise, referred to detector-3 nV/√Hz
- Black-body temperature measured with 0.1°C accuracy
- ✓ Large electronics hardware miniaturized

Channels	Resolution
Visible, SWIR	1 km
MIR, TIR-1, TIR-2	4 km
Water Vapor	8 km

MINIATURE SENSORS DEVELOPMENT

MINIATURISED MULTISPECTRAL CAMERA (IMS-1)

Design for small satellite

- Small volume, low weight & power
- Size & weight limit
- Focal length Resolution
- Aperture –SNR & Contrast
- Power limits
- Camera speed
- Transmission data rate,
- > Thermal control aspects, etc.

MISSION GOALSSpace craft altitude : 632 KmResolution : 37 mSwath : 151 KmSpectral bands : 4 (VNIR)

Power: 13.2 W

Indigenously Developed compact Lens
 Indigenously Developed 4K, Four Port CCD
 FPGA & AFE (instead of video processor) based miniature camera electronics – First time

IMPROVEMENTS OVER TIME

Terrain mapping camera for moon mission

Design Challenges

- \checkmark Miniature stereo triplets, B/H = 1 &FOV : ±25 \circ (5m)
- Single lens + fold Mirrors (innovative optical field compressor)
- \checkmark Low power (20W), small volume & low mass (8Kg)
- Honeycomb with CFRP Face sheets
- APS with On-Chip Digitizer, FPGA based logic

YAW	= 450 mm
ROLL	= 362 mm
PITCH	= 255 mm
Weight	< 6.3 kg
Power	< 1.8 W

Hyper Spectral Imaging Payload – Mineral/ chemical mapping of lunar surface & air glow measurement

First time

- ✓ 64 bands, 15nm spectral band
- Optics wedge filter based spectral dispersion & wide band lens for simplicity & compact size
- Spectral bandwidth by pixel binning
- Active Pixel Sensor-256x 512 pixs with on-chip digitizer for low power & weight + FPGA based camera electronics & Tray packages
- Structure using CFRP-Honeycomb

NEW SENSORS UNDER MENT CHNOLOGY $\mathbf{F}_{\mathbf{A}}$ ENGES

Cartosat 2C/D

Challenges

PAN -0.67 m . MX 1.5m imagery, Optics & structure same as in Carto-2/2A/2B High Data Rate Radiometric improvements

Multi-line TDI detectors
 Optical butting -large swath with short detectors

Improved FOV

□strip filters for spectral selection

Low power, high speed focal plane electronics

Data rate – 3.2 Gbps

□Sync. of satellite movement with TDI detector

On-board radiometric correction

Thermal handling – 200W at focal plane

Development of test bench & data archival

Cartosat-3 Mission

GISAT challenges

- Surveillance, Monitoring of transient phenomena (cyclones, tsunami etc.)
- Continuous spectral discrimination & parameter extraction of vegetation, soil/vegetation, rock/soil ,inland & coastal water **Meteorology and night** time imaging
- ✓ Imaging & spectroscopy for land, ocean & atmosphere studies
- ✓ Very high resolution (50m VNIR, 1.5Km LWIR) imaging
- \checkmark Very high resolution Imaging spectrometers in VNIR, and SWIR
- ✓ Versatile scanning modes
- > Optics FOV ~ 1° , S/C slewing to cover earth disc
- Spectral range from 0.4 to 12.5 um
- High density focal plane
- Calibration using cold and planetary view >24K VNIR, 512x 256 VNIR, 1000x 256 SWIR, 320x 256 LWIR detectors for higher scan speed
- Convex grating based spectrometers
- ► Long life active coolers
- > 7 scan modes including arbitrary scan for irregular area
- Compact focal plane electronics.
- Photon noise limited system SNR
- Versatile Formatter design (CCSDS, Space packet protocol) & MIL-STD-1553 interface

CANEUS SSTDM 2014

Mars Orbiter Mission Payloads

- Methane Sensor for Mars (MSM)
- Thermal Infrared Imaging Spectrometer (TIS)
- Mars Colour Camera (MCC)

MCC

MSM

TIS

Thanks