

History of the Indian Remote Sensing Programme

Ranganath Navalgund

Vikram Sarabhai Distinguished Professor Indian Space Research Organisation Bangalore, India

Workshop on Small Satellites & Sensor Technology for Disaster Management, Indo-US S&T Forum

BEGINNING

Aerial view of Grove Area (Coconut Root Wilt Disease Study)

Stared with the pioneering experiment of detecting Coconut Root Wilt Disease using Color Infrared Film in 1970s by Prof. P. R. Pisharoty.

Bhaskara-I (1979) and Bhaskara-II (1981) – Experimental Remote Sensing Satellites provided the foundation for the operational Indian Remote Sensing Programme.

The Result is operational Indian Remote Sensing Programme with the launch of IRS-1A on March 17, 1988

DURING 1980s

NRSA established Earth Station Complex at Annaram Village, Shadnagar, 59 km from Balanagar in 1979 to receive Landsat Data

1980-83: Landsat 2,3 & NOAA- 2, 3

1983-88: Landsat 5, ERS, SPOT & NOAA

Today: Multimission Scenario - 4 Terminals (7.5m) - upto 960Mbps

EVOLUTION OF INDIAN EO SYSTEMS

(Microwave Capability)

RISAT-1 (2012)

C Band SAR (5.35 GHz)

(Hyperspectral Capability)

IMS-1 (2008)

- > HySI Sensor (64 bands, 506 m)
- > TWSAT-MX (4 bands, 37 m)

(High Spatial Resolution & Stereo Capability)

TES, Cartosat-1, 2/2A/2B (1999, 2005, 2007, 2008, 2010)

> PAN: 2.5 m, 1m +26° Aft: -5° Fore

(Multi resolution, Frequent observations, Better radiometry)

Resourcesat-1/2 (2003, 2011)

- LISS-3: 23 m, 4 XS,
- LISS-4: 5.8 m, 3-XS,
- > AWiFS: 56 m, 4-XS

(High Repetivity/Revisit, High Spatial Resolution)

IRS-1C/1D (1995,1997)

- > LISS-3: 23/70 m,
- Steerable PAN: 5.8 m,
- > WiFS: 188 m

IRS-1A/1B/P2 (1988,1991,1994)

- > LISS-I: 72.5m, 4XS
- > LISS-II: 36.5m, 4XS

Land Applications

BHASKARA 1 /2 (1979,1981)

TV Camera, Microwave Radiometer

..towards enabling solutions

RESOURCESAT-1 / 2 (2003, 2011)

Agricultural applications

(field size, frequent observations, better radiometry)

- LISS-4 Mx camera: 5.8m Resolution and 70 km swath
- LISS-3: 23.5m Resolution and 141 km Swath
- AWiFS: 56m Resolution and 740 km Swath
- Repetitivity: 5 days (AWiFS) to 24 days (LISS 3) &
- Revisit: 5 days (LISS 4) with tilting 26 deg tilt

AWiFS

LISS-III

LISS-IV

RISAT-1 (2012)

Space borne SAR in C-band at 5.35 GHz

- Stripmap FRS-1 / FRS-2 (Range Doppler/ Chirp Scaling)
- ScanSAR MRS & CRS (Range Doppler/Specan)

 Spotlight (modified sub-aperture) modes.

Single/ Dual / Quad Polarisation imaging with 3- 50 m Resolution & 10 - 240 km Swath

EVOLUTION OF INDIAN EO SYSTEMS: OCEAN

SARAL (2012)

Altika:

- Ka band (35.75 GHz) radar altimeter
- Dual Frequency microwave radiometer (23.8 and 37 GHz)

ARGOS: Data collection Platform

Oceansat-2 (1999)

OCM: 360m, 1420km swath, 8 XS

OSCAT: Ku Band Scatterometer

50km resolution; Ocean surface wind speed 4

m/sec to 24 m/sec

ROSA: Horizontal: 300 km; Vertical: 0.3 km (lower troposph.), 1-3 km (high troposph.)

IRS-P4 (Oceansat-1) (1999)

OCM: 360m, 1420km swath 8 XS (0.402-0.885 μm)

MSMR: Microwave Passive Radiometer

- 6.6, 10.65, 18, 21 GHz
- 150, 75, 50, 50 km resolution

IRS-P3 (1996)

MOS-A/B/C Spectrometer:

- 500m, 200km swath,
- 18 XS (0.40-1.6 µ m)

WiFS: 188m, 3 XS, 810 km

Global Wind Vector Product

Changes in OCM2:

- Band 765 nm → 740 nm to avoid O₂ absorption
- Band 670 nm → 620 nm for better quantification of suspended sediments

SARAL: SATELLITE WITH ARGOS AND ALTIMETER

Altika/SARAL mission belongs to the global altimetry system for the precise and accurate observations of ocean topography, circulation and sea surface monitoring

ISRO & CNES Collaboration

Mission:

- Sun-synchronous, polar orbiting satellite
- Inclination: 98.38 Deg.
- Altitude: ~800 km
- Repeat cycle: 35 days

Altika Payload:

- Ka-band (35.75 GHz, BW 500 MHz) radar altimeter
- Dual-frequency microwave radiometer (23.8 & 37 GHz)
- DORIS
- Laser Retro-reflector Array

SARAL/AltiKA SSHA observation overpass over Indian Ocean on Feb 28, 2013 and SLA from POM model at 0.5 degree resolution.

EVOLUTION OF INDIAN EO SYSTEMS: ATMOSPHERE

Meghatropics (2011)

MADRAS, SCARAB, SAPHIR, GPS OCC.

Kalpana (VHRR) and INSAT-3A (2001-2005)

VHRR:

• 2.0 km Vis,

• 8 km IR, WV

CCD: (only 3A)

• 1 km MS

INSAT-3D (2013) Imager and Sounder

INSAT - 2D/ 2E (1996-2000)

VHRR:

CCD: (only 2E)

• 2.0 km Vis,

• 1 km MS

• 8 km IR, WV

INSAT - 2A/ 2B/ 2C (1991-95)

VHRR:

- 2.75 km Vis,
- 11 km IR

INSAT - 1A/ 1B/ 1C/ 1D (1982-1990)

VHRR:

- 2.75 km Vis,
- 11 km IR

CANEUS SSTDM 2014

INSAT 3D Sounder

Sounder

Imager

19 channel Sounder

Advanced 6-channel imager

Sensor	Bands (μm)	Spatial Res.
lmager	VIS (0.55-0.75), SWIR (1.55-1.70) MIR (3.8-4.0) WV (6.5-7.1) TIR1 (10.2-11.3), TIR2(11.5-12.5)	1km x 1km 4km x 4km 8km x 8km 4km x 4km
Sounder	19 channels	10km x 10km

Applications: Improved estimation of water vapour content, cloud, wind vector, upper tropospheric humidity, sea surface temperature and surface insolation

INSAT-3D Weighting function over Indian Region (July)

AIRBORNE MISSIONS

DMSAR

Freq: 5.35 GHz; Swath: 90, 56, 8 km; Resol:10, 5, 1 m; Look Angle : 84.5 MX;

Altitude: 8 km.

Water Inundated regions of Dholka, near Ahmedabad

ALTM

ALS50 System; Laser: Nd-YAG; Wave length:1064 nm; Altitude: 500-4000 m; FOV:75 deg; IFOV:0.33 mrad

Part of Hyderabad City; Height Range:404 - 436m

AIRBORNE HYPERSPECTRAL

Altitude: 6.473 km; Resol.: 4.4 m; AIMS

Spectral Range: 456-889 nm; Bands:

143; Band Width: 3.3-4.1 nm

AHySI

Spectral Range: 420-950 nm;

Spectral sampling interval: 1.2 nm;

Number of Bands:512

AIRBORNE TMC

IFOV: 50 microRad; Swath @ 5 km: 1 km; Spectral Range: 0.5-0.75 µm; Stereo Mode:

Alongtrack Triplet

Pixel: 9 microns; Focal length: 105 mm; FOV: 40 dea

AIRBORNE DIGITAL CAMERA

CANEUS SSTDM 2014

INDIAN EO SYSTEM: ACHIEVEMENTS

- Institutional Mechanism: National Natural Resources Management System
- Generating National level Inventories: Biennial Forest Cover, Land use, Wetland, Snow & Glaciers, Coastal Zone, Crops, Wasteland...
- Action Plans for Sustainable Development: Watershed, Ground water...
- Creating Decision Support
 Centre for Disaster
 Monitoring & Mitigation

Ground water prospects map

Glacier Monitoring

INDIAN EO SYSTEM: ACHIEVEMENTS

- Development of Delivery Mechanisms for grass-root reach (Village Resource Centre)
- Development of Indigenous software for Data processing
- Building up indigenous EO
 Infrastructure: Satellites,
 Payloads, Data Acquisition
 Systems, Data Processing
 and Application Capability
- Capacity Building: National and International (CSSTE-AP, Dehradun)

Village Resource Centre

INDIA IN INTERNATIONAL PARTNERSHIP

- Bilateral and multilateral cooperation with Countries and International Organisations
- International sensors/satellites on Indian EO Satellites/launch vehicles

from the Indian soil - Nike-

DLR's MOS on IRS-P3

ISRO-DLR Airborne SAR Mission

Chandrayaan-1

- UK: Low Energy X-Ray Spect.
- Germany: Infrared Spect. (SIR-2)
- Sweden: Sub KeV Atom reflect. Analyser
- Bulgaria: Radiation Dose Monitor
- USA: Miniature SAR
- USA: Moon Mineralogy Mapper

ISRO-CNES

Megha-Tropiques SARAL

BIRD

EO MISSIONS - NEAR FUTURE

CARTOSAT-2E

High Resolution panchromatic and Multispectral Imaging

Payloads

- PAN (0.60 m, 10 km swath, 11 bit)
- Mx (2m, 10 km swath, 4 Xs, 11 bit)

Orbit: 500 km

Local time: 0930 hrs

CARTOSAT-3

Very High Resolution Panchromatic, Multispectral and Hyperspectral Mission

Payloads

- PAN (0.25 m, 16 km swath, 11 bit)
- Mx (1m, 16 km swath, 11 bit)
- HySI (12m, 5 km swath, 200 Xs)

RESOURCESAT-2A

To provide continuity for Resourcesat-2

rayloads

- LISS 4 (5.8 m, 70 km swath, 10 bit)
- LISS 3 (23 m, 141 km swath, 10 bit)
- AWiFS (56 m, 800 km swath, 12 bit)

Orbit: 817 km

Local time: 1030 hrs

GISAT/ GeoHR imager

Geosynchronous Orbit

Payloads

- High resolution multi-spectral VNIR: 50m
- Hyper spectral VNIR: 320m
- Hyper spectral SWIR: 192m
- High resolution Multi-spectral: 1.5km

Orbit: 36000 km

Every 30 min

observations over India

Local time: 1030 hrs

Orbit: 450 km

Luank You

INDIAN EO SCENARIO IN NEAR FUTURE

INDIAN EO PROGRAMME: DIMENSIONS

Space Infrastructure

- Launch vehicle (PSLV, GSLV)
- Spacecrafts (LEO, GEO and beyond)
- Sensors (optical/microwave)

Ground Segment

- Data Acquisition and Processing
- International Ground stations
- > TTC Network
- Cal-Val Programme

Applications

- Natural Resources & Environment
- Advanced R&D for land-atmosphereocean interactions
- Synergy between EO, Communication& Navigation

Institutionalization

- National Natural ResourcesManagement System
- Involvement of stake-holders from the planning level

Capacity Building

- Formal education through CSSTE-AP, IIRS, IITs....
- On-the job training

International Cooperation

Bilateral & Multilateral
 cooperation with various
 Countries & Int'l Organizations

SPACE INPUTS FOR SUSTAINABLE DEVELOPMENT

Remote Sensing of Land

- Multi resolutions, multispectral bands and high repetivity – Optical and Microwave
- Time series, long term observations

Atmospheric Observations

Cloud motion vectors, rain rate, vertical profiles of temperature and humidity

Ocean Measurements

Ocean colour, sea surface temperature, wind vector, fishery prospects

Communication and Navigation

Broadcasting, Data Dissemination,
 Geolocation

In-situ Measurements

- AWS, Flux Towers, GT Sites
- Image Processing and GIS Software IGiS

EO APPLICATIONS FOR SOCIETAL BENEFITS

Agriculture & Soils

- Crop Production Forecast
- Saline/ Sodic Soils mapping
- Agro-Met Services & Disaster Surveillance (pest, floods, drought)
- Horticulture development

SC-A

Bio Resources & Environment

- Forest Cover & Type mapping
- Wetland Inventory & Conservation plans
- Biodiversity Characterization
- Desertification Status mapping
- Coastal, Mangroves, Coral related
- Snow & Glacier studies

SC-B

Cartography

- GCP Library for IRS Data correction
- Large Scale Mapping
- Topo-map updation Satellite-based
- Digital Elevation Model (Carto-DEM)
- Cadastral Level mapping

SC-C

Geology & Mineral Resources

- Landslide Hazard Zonation
- Mineral/ Oil Exploration, Mining Areas,
- Seismo-tectonic Studies
- Engineering & Geo-Environmental studies

SC-G

Ocean and Meteorology

- Ocean Primary Productivity
- Ocean State Forecast (OSF)
- Storm Surge Modeling
- Regional Weather prediction
- Tropical Cyclones & Mesoscale studies
- Extended Range Monsoon Prediction

SC-O&M

Rural Development

- National Drinking Water Mission
- Wastelands Mapping/ Updation
- Watershed Development & Monitoring
- Land Records Modernization Plan

SC-R

EO APPLICATIONS FOR SOCIETAL BENEFITS

Urban Development

- Urban Sprawl Mapping of Major Cities
- Master/Structure Plans
- Comprehensive Dev. Plans (CDP) of selected Cities/ Towns
- Base Map generation for Towns
- National Urban Information System

SC-U

Water Resources

- Irrigation Infrastructure assessment
- Water Resources Information System
- Command Area/ Irrigation Performance Evaluation
- Snow-melt Run-off Estimation
- Reservoir Capacity Evaluation
- Site Selection for Hydro-Power

SC-W

NR Census

- Periodic Inventory of Natural Resources under NR Census Programme:
 - Land use/ Land Cover, Soil,
 Geomorphology, Wetland, Land
 degradation, Snow & Glaciers,
 Vegetation
 NRC

Disaster Management Support

- Operationally addressing various natural disasters like Flood, Cyclone, Drought, Landslide, Earthquake and Forest Fire
- R&D Studies on Early warning Systems, Decision Support Tools

DMS

Climate Change Studies

- Mapping the indicators, Monitoring the agents and Modelling the Impact
- Characterisation of climate variables (Land, Atmosphere & Oceans)
- Methane Emission, Timberline study, LU LC Change dynamics, etc.

NICES

REMOTE SENSING APPLICATIONS IN AGRICULTURE

Crop monitoring

Identification, inventory, regional change detection, yield forecast

Crop intensification

Cropping pattern, crop rotation, crop diversity

Wastelands & Watershed development

 Extent and types, soil salinity and water logging

Water resources

Surface water, ground water, command area management

Precision farming and horticulture

Yield and nutrient variability, site suitability

Drought Assessment

Soil moisture availability

Climate Change in Agriculture

Methane emission

INDIAN EARTH OBSERVATION SYSTEM: GOALS

Provide Leadership and Continuity in Earth Observations through an Operational EO Infrastructure to

- Conduct periodic natural resources inventory, enable the national spatial data infrastructure and provide state of environment reports to the nation
- Maximize outreach of natural resources information in support of developmental efforts of government, industry and voluntary agencies
- Enable establishing ocean state forecasting system and facilitate improved weather forecasting
- Support information needs for disaster monitoring and mitigation
- Develop a better scientific understanding of the earth system, its processes and global change

INDIA'S PRIORITIES

- Surface Water Resources
- Ground Water Prospecting
- Snow & Glaciers

- Sustainable Agriculture
- Inland & Marine Fisheries
- Horticulture

- Weather Forecasting
- Ocean State Forecasting

- Forest Status
- Biodiversity
- Coastal Zone
- > Environmental Impact

- Urban Planning
- Rural Roads
- Infrastructure Development

Disaster Monitoring & Mitigation

- Global change Indicators
- Regional Climate Model
- Impact Assessment

CROP MONITORING - FASAL PROGRAMME - MNCFC

- Institutionalizing the operational Use of Remote Sensing data.
- Crop assessment and forecasting using various sources of information for multiple in-season crop assessment in near real-time.
- Integrated use of modern tools such as GIS, large data bases, modelling and networking

Mahalanobis National Crop Forecast Centre

Crop	Area (Mha)	Production (Mt)	Date of Forecast
Jute , 2012	0.79	0.79	Aug, 1, 2012
Rice, (2011-12)	37.13 (kharif)	80.27 (kharif)	Jan. 06, 2012
2012-13	37.96 (Kharif)	79.77 (kharif)	Oct 4, 2012 (F2)
Wheat (2010-11)	28.89	83.96	March 31, 2011
2011-12	29.55	88.31	April, 12, 2012
Potato (2011-12)	1.58	31.25	Feb. 24, 2012
Mustard (2010-11)	6.12	7.33	Jan., 31, 2011
2011-12	6.27	7.53	Feb. 27, 2012

WASTELAND MONITORING

A Targeted Rural Development Programme: with village & watershed boundaries

- Bring culturable wastelands under cultivation
- Enhance food grain production
- Bring 30% under green cover
- National Wasteland Inventory Project (1986 2000)
- National Wasteland Updation Mission (2003 2004)
- Monitoring of the wasteland areas (2005-06)
- Wasteland Change Analysis using three season LISS-III data of 2008-2009
- Coverage : Entire India in 1:50,000 scale
- No. of Wasteland categories : 28

Area (Mha)	% of TGA	Year of Data
63. 85	20.17%	1986 -2000
55.27	17.45%	2003
47.22	14.91%	2005
46.73	14.76%	2009

IDENTIFICATION OF PROBLEMATIC SOILS

- Problematic soils have been mapped.
- Monitoring of the reclamation of the salt affected soils has also been done using muti-date satellite imagery
- Waterlogged areas Mapped and monitored

- 1 Strongly Saline- Sodic Soils
- 2 Moderately saline –Sodic Soils
- 3 Slightly saline Sodic soils

Salt- Affected Soils in Part of Sharda Sahayak Command Area (Indo-Gangetic Plains), Jaunpur (UP)

1975 – 46,029 ha

1999 – 28,749 ha

WATERSHED DEVELOPMENT

Integrated Mission for Sustainable Development (IMSD)

- Land & Water resources development plans for 84 Mha in 175 districts in country
- Detailed planning and implementation in many watersheds

Space data in conjunction with collateral data has been used for

- Characterisation land cover, morphometry, soil degradation, ground water availability
- Prioritisation erosion
- Development Plans Soil and moisture conservation plans
- Monitoring Vegetation cover, Ground water level, Productivity

Characterisation & Prioritisation

GROUND WATER EXPLORATION & RECHARGE

WATER RESOURCES

- Inventory of surface water bodies
- Performance evaluation of irrigation commands
- Groundwater exploration and recharge
- Snowmelt run-off (BBMB)
- Glacier inventory, retreat

GLACIER INVENTORY, RETREAT

Jamdhar Glacier, Tons Basin

Basins	No. of	of Area (km		2)
	Glaciers	1962	2001/04	Loss(%)
Chenab	359	1414	1110	21
Parbati	88	488	379	22
Baspa	19	173	140	19
Total	466	2075	1629	21

FORESTRY, ECOSYSTEM AND ENVIRONMENT

Mangroves

Coral Reef

Mangrove area (km²) in different states

Region	Area (1986)	Area (1990-93)
Andaman & Nicobar	922.0	762.0
West Bengal	2067.0	1838.0
Orissa	203.0	187.0
Andhra Pradesh	322.0	380.0
Tamil Nadu	30.0	23.0
Karnataka	11.3	8.7
Goa	5.5	6.7
Maharashtra	124.0	222.0
Gujarat	767.0	1012.0
Total	4451.8	4439.4

Reef flat Algae/sea grass Coralline shelf Sand Mud on reef Vegetated RF Coral head/ Reef patch Lagoon Cays

OCEAN BIOLOGY

- Potential Fishery Zone Forecast (integration of Chl, SST, winds)
- Primary productivity modeling
- Deep water productivity (Tuna)
- Bio-geo-chemical analysis for nitrate & carbon cycle

DISASTER MANAGEMENT SUPPORT (DMS) SYSTEM

Emergency Commn, Detection, Disaster Early Warning/Alert, ...

CWDS, Ocean Databuoy, Seismic Stns networking, Tsunami Sensor (BPR), Digital/DTH based DWS, Sat-Phone, Messaging terminal, Fishermen DAT, ...

Satellite Data & GIS layers

Damage assessment, Hazard zonation, mitigation planning, International Charter, Sentinel Asia, UN-SPIDER, ...

Disasters - Operationally addressed - Enabling States in mitigation efforts

Flood **Inundation monitoring Damage assessment Hazard zonation** Bank erosion studies

Earthquake Damage Assessment

Cyclone **Inundation mapping Damage assessment**

Landslide **Damage Assessment Hazard zonation**

Drought

Monthly & End-of-Season Agri Drought Assessment

Forest Fire Active fire detection **Damage assessment**

SPACE APPLICATIONS FOR CLIMATE CHANGE

Himalayan Glacial Retreat

GHG Assessment (Methane)

6865 m

Upward Shift in Timberline & Vegetation in Alpine Zone

Aerosol Optical Thickness Distribution

Sustainable Habitat

Water **Mission**

Himalayan **Ecosystem**

Green India

Sustainable Agriculture

Strategic Knowledge

- Biodiversity Characterisation
- Carrying Capacity Models
- **Coastal Ecosystems**
- Water Resources Assessment
- Flood Inundation & **Damage Assessment**
- · Species Composition, Tree line
- Ecosystem Characterization
- Snow/ Glacier Dynamics
- Clean Development Mechanism
- Sites For Bio-fuel **Plantations**
- Biodiversity Conservation
- Cropping Systems **Analyses**
- Precision Agriculture
- Land Degradation
- Sensor System Studies
- Model Calibration
- Aerosol Loading