

Research on Effects of RF Emissions on Aircraft Safety

George Szatkowski NASA, Langley Research Center

27 March 2007

- HIRF Facility Overview & Capabilities
- RF Emission Measurements
- Path Loss Mesurements
- Interference Threshold Measurements
- Summary

Objective

IVHM Project

 To assess, improve and develop methodologies and capabilities for evaluating immunity of avionics equipment high intensity radiated field (HIRF) and lightning

HIRF Laboratory Test Capabilities

Aviation Safety Program

- High Intensity Radiated Field Testing
- State of the art facility and instrumentation
- Best field uniformity known for reverberation chambers as characterized by NIST
- Three reverberation chambers
 - Also have access to a semi-anechoic chamber and a GHz Transverse EM Cell (GTEM)
- <u>Multiple chambers testing</u> simultaneous testing different components of a system to different environments
- Achievable <u>field strength 1500 3000 V/m</u>
- RF Power amplifiers include (minimum performance):
 - 10 kHz 250 MHz : 2000W CW, 4000W Pulse
 - 0.1 1 GHz: 1000W CW/Pulse
 - 1 4 GHz: 200 W CW (2 each)
 - 4 18 GHz: 200 W CW
 - 1 18 GHz: 1000W Pulse
- Airframe shielding effectiveness measurement

Lightning Indirect Effects Capabilities

Aviation Safety Program

IVHM Project

- <u>Lightning indirect effects</u> (induced)
 - Single stroke, multiple strokes, multiple bursts
 - DO-160 test levels, waveforms and patterns
 - Programmable to produce Boeing & Airbus patterns
 - Software automation and remote control
 - COTS Easy to maintain
 - Very few test sets worldwide. Customers include Boeing and Airbus
- Induced <u>surface current</u> measurement capabilities
 - Low frequency network/spectrum/impedance analyzer
 - Surface current probes
 - Capability developed for measuring surface current on composite materials

Single and Multiple Strokes

Multiple Bursts

Recently Acquired Capabilities

Aviation Safety Program

- Tektronix Real-Time Spectrum Analyzer
 - 8 GHz Limit
 - Waterfall display with deep storage
 - Very fast (microseconds sweep) for up to 36 MHz span

Recent Research Activities

Aviation Safety Program

- Active Radio Frequency Identification (RFID) Devices Interference Assessment for aircraft radio com/nav systems (FAA)
- Airplane RF coupling measurements and analysis on B757's, B747's and B737's, regional jet's and General Aviation com/nav systems - TCAS, LOC, GS, GPS, VHF Comm to assess effect on systems and mitigation techniques to determine Interference Path Loss (IPL) and Personal Electronic Devices (PEDs) threat locations
- Contributed significantly to RTCA/SC202 committee to develop guidelines for use of PEDs on aircraft
- Customized EMI tests
 - Air Force Research Lab on four test articles actuators and flight control computer
 - Honeywell Recoverable Computer Systems, Safety Critical Avionics Systems Branch, RTD

Recent HIRF Publications

Aviation Safety Program

- Investigation of Electromagnetic Field Threat to Fuel Tank Wiring of a Transport Aircraft, March 2000, NASA/TP-2000-2-9867. NASA Langley's H.J.E. Reid Award, 2000,
- Ultrawideband Electromagnetic Interference to Aircraft Radios, October 2002 NASA/TM-2002-211949
- Investigation of RF Emissions from Wireless Networks as a Threat to Avionic Systems, October 2002 NASA/CR-2002-211941
- Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems, December 2004 NASA/CR-2004-213513
- Third Generation Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios, March 2005 NASA/TP-2005-213537, IEEE EMC Conference (Third Place Best Conference Paper)
- Portable Wireless LAN Device and Two-Way Radio Threat Assessment for Aircraft Navigation Radios, July 2003 NASA/TP-2003-212438
- Evaluation of Mobile Phone Interference with Aircraft GPS Navigation Systems, 2004 NASA/TP-2004-213001

HIRF Immunity Testing

Aviation Safety Program

IVHM Project

Recoverable Computer System (RCS) Evaluation

NASA/Honeywell Recoverable Computer System

NASA/Honeywell RCS in HIRF Chamber

RCS Recovery Triggered, Multiple Internal Faults (f=640 MHz, E=850 V/m)

Evaluation and Enhancement of HIRF and Lightning Protection Kit

Aviation Safety Program

Measurement of Field Attenuation Due to Airframe

PED Coupling to Aircraft Systems

Aviation Safety Program

IVHM Project

• (EUROCAE WG-58 and RTCA SC-202)

-Assess the risk of <u>in-band on-channel interference</u> to aircraft radio receivers from <u>Portable Electronic Devices</u> (PEDs) <u>Victim</u>

Source
Emissions
(Wireless Devices)

Interference
Path Loss (IPL)

(Aircraft Fuselage)

Interference Thresholds

(Nav. & Com. Radio Receivers)

Req. IPL (dB) >= Emissions (dBm) – Interference Thresholds (dB)

Supplemental IPL = Req. IPL (dB) – Measured IPL (dB)

Wireless Devices Evaluated

Aviation Safety Program

- 2nd Generation (2G) Wireless Phones
 - GSM (Europe: 900 MHz Band)
 - CDMA (US: 850 MHz Band)
- 3rd Generation (3G) Wireless Phones
 - GSM/GPRS
 - CDMA2000
 - Operating in US Cellular (850 MHz) and PCS (1900 MHz) Bands
- Wireless LAN Devices
 - IEEE 802.11a (5 GHz Band)
 - IEEE 802.11b (2.4 GHz Band)
 - BlueTooth (2.4 GHz Band)
 - Two-way Radios (462 468 MHz)
 - Family Radio Service (FRS)
 - General Mobile Radio Service Radios (GMRS)
- Radio Frequency Identification (RFID)
 - Active Tags (300 MHz 2.5 GHz)

Wireless Phones and Test Modes

Aviation Safety Program

IVHM Project

GSM/GPRS Phones

- Test modes for GSM and CDMA include:
 - Voice Mode
 - Data Modes. Three or more different data rates
 - Cellular and PCS Bands
 - Five Frequency Channels per band,
 - · Equally spaced across the band
 - Test at maximum phone transmission power
 - Also Include Idle mode and Idle-without-a-BSSsignal mode

CDMA Phones

Wireless Techn	No. of Devices	No. of Test Cases Per Device	No. of Test Bands	Total No. Test Cases
GSM	17	21	5	1785
CDMA	16	21	5	1680

2G Phone Emission

Aviation Safety Program

IVHM Project

• Objectives:

Develop a radiated emission <u>measurement process</u> for CDMA and GSM wireless phones. Provide a <u>preliminary risk assessment</u> for their potential interference to aircraft Localizer, Glideslope, VOR and GPS radio receivers

A Few Details:

- Tested in semi-anechoic and reverberation chambers
- Phones operated in different operating modes
- Compile <u>interference path loss</u> and <u>receiver</u> interference threshold data

Key Results/Findings:

- Semi-anechoic and reverberation methods comparability
- Aircraft-band emissions from the tested phones were insufficient to be of concerns
- Demonstration of intermodulation products in aircraft bands for phones in near proximity.
 Intermodulation products in aircraft bands with other wireless technologies are possible
- Demonstration of wireless connectivity in a reverberation environment

Semi-anechoic chamber test

Multiple phone interaction

GSM & CDMA base-station simulator

3G Phone

Aviation Safety Program

- Extension of earlier tests of 2G phones
 - To include PCS band phones
 - Newer generation data capable phones
- 33 phones: 17 GSM/GPRS, 16 CDMA 1XRTT phones
- Measurements performed in reverberation chambers
- Phone controls using a new Agilent Base-Station Simulator
- Many combinations of Filters
 - In Wireless Path: to block noise from the Base Station Simulator from enter into the chamber
 - In Measurement Path: to block wireless signals from causing intermodulation in the receiver and pre-amps
- Results compared against
 - Spurious Emissions from Laptops/PDAs
 - FCC Part 22 & 24 for Wireless Phones and FCC Part 15 for non-transmitting devices
 - RTCA/DO-160D Category M Limits for aircraft installed equipment

Wireless LAN Devices

Aviation Safety Program

IVHM Project

- Spurious Emissions Measured for:
 - Six 802.11a Devices (5 GHz band)
 - Seven 802.11b Devices (2.4 GHz band)
 - Six BlueTooth Devices (2.4 GHz band)
 - 14 FRS & GMRS Two-way Radios (462 468 MHz band)
- Measured Data Compared against :
 - Spurious emissions from existing <u>Laptops/PDAs</u>
 - FCC Part 15
 - RTCA/DO-160 aircraft equipment emission limits

802.11A

FRS Radios

GMRS Radios

WLAN Device Maximum Emissions

Aviation Safety Program

Measurement Band

Radio Frequency Identification (RFID) Active Tags

Aviation Safety Program

IVHM Project

Identec

Sovereign Tracking Systems

WhereNet

RF Code

Savi

Main Tag Types:

- Beacon
- Interrogated
- Motion

Shaker for Motion Tags

Testing Beacon Tags

Preliminary Findings

Aviation Safety Program

IVHM Project

- Many tags are noisy
 - Much worse than other wireless devices tested
 - Possibly due to low cost and lack of required performance standard
 - Due to high noise levels and harmonics
 - Filters are very important for achieving good sensitivity RFID Spurious Emissions Bandy Hentec IQ8 Interrogated 20 tags

Example: RF Code 2 seconds **Beacon Tags**

Path Loss- Computing Required IPL

Aviation Safety Program

IVHM Project

Class A- Industrial Class B- Residential 15 209- Transmitters Licensed T-Peds- Cell Phones

VHF-Com

a) Required Minimum Path Loss (dB) = Emissions (dBm) - Thresholds (dBm)

	FCC-15.109		FCC-15.209	Licensed T-PEDs
	Class A	Class B		include 2-way radio
	EIRP (dBm)	EIRP (dBm)	EIRP (dBm)	ERPor EIRP (dBm)
Receiver Interference Threshold (DO-199) (dBm)	<u>-41.2</u>	<u>-51.7</u>	<u>-51.7</u>	<u>-13</u>
Typical <u>-107</u>	65.8	55.3	55.3	94
Worst Case <u>-107</u>	65.8	55.3	55.3	94

In VHF-Com Band/LOC/VOR

FCC-15.109

Class A 150 uV/m @10m

Class B 150 uV/m @3m

FCC-15.209 150 uV/m @3m

Licensed T-PEDs-13 dBm

b) Minimum IPL (MIPL) - VHF-Com - From Existing Aircraft

(From NASA WLAN Report -July 2003c- pages 94-95)

,	Large Aircraft	Medium Aircraft	Small Aircraft
Lowest MIPL	31.5	36.3	28.7
Ave MIPL	48.6	63.1	42.2
Highest MIPL	71.5	76	50.9

Desired IPL for FCC Emission Limits

Aviation Safety Program

IVHM Project

[Desirable IPL for FCC Emission Limits] vs [Measured AC IPL] Comparison

[Data Computed with FCC Part 15 Emissions: Quasi-peak for f<1GHz, Peak for f>1GHz (20 dB Peak Limit/Ave Limit)]

Summary of Path Loss Measurements

Aviation Safety Program

- The attenuation needed to have a "PED proof" certified aircraft vs FCC class A (or even B) devices is very difficult to achieve for all receivers
 - 10 to 20dB for ATC/TCAS, Glide Slope, DME
 - 20 to 40 dB for VHF, VOR, Localizer
 - 50 to 70 dB for GPS at 1.6 GHz
- 8 additional aircraft have been measured in 2006
- Results will be reported in NASA TP "Small Aircraft RF Interference Path Loss Measurements" & RTCA document (2007)
- Follow on experiments will measure propagation path to determine mitigation strategies for future aircraft designs (2008)
- Database containing path loss measurements being populated. (2009)

Summary

Aviation Safety Program

- We have extensive measurement and analysis capabilities to address interference to aircraft radio receivers
- Results of our work were cited extensively in design standards documents
- Highly positive feed back from the FAA and the industry
- Would like to continue and expand the work to address issues of concern to the FAA and the industry on aircraft interference

Back UP Slides

Test Setup

Wireless Path

Aviation Safety Program

Base Station Simulator

Filters – Wireless Path

- Agilent 8960-Series 10 Wireless Communication Test Set (Hardware)
 - Multi-format capability
 - Format-flexible architecture
- E1991B <u>Test Application</u> Suite (Software)
 - Capable of Testing AMPS, TDMA, CDMA IS-95, CDMA2000, 1xEV-DO,
 GSM/GPRS, EGPRS (EDGE), WCDMA devices
- Filter Network:
 - Parallel filters pass only Cellular and PCS signals
 - Allows band switching between Cellular and PCS bands
 - Necessary for testing dual-band phones

Aviation Safety Program

Measurement Path Equipment

NASA

Result Sample and Summary

