Packaging, Plug-and-play, Modularity and the Impact of Wires

Dallas 28 March 2007

Jim Lyke AFRL / VSSE 505-846-5812 james.lyke@kirtland.af.mil

Outline

- Packaging and the "War on Wires"
- Nature of Wires
- The Pursuit of the Six-Day Spacecraft
- Some Eclectic Observations about Wiring

What is Packaging and Interconnect?

- Conductor/dielectric structures that provide:
 - Interconnection between terminals of devices within a system
 - power delivery
 - thermal management
 - protective enclosure
- Advanced vs. conventional packaging

The Packaging Hierarchy

- Packaging is like a structural bureaucracy
- Established and entrenched infrastructures that have evolved through "happenstance"
- Promotes view of packaging as a headache, necessary evil

Twenty Years in Space Electronics Miniaturization

1991- Brilliant **Pebbles**

1992 - 2003 3-D packaging

MEMS

1998 - 2003 Miniature reconfigurable processors HDI

1998 - Microwave

1999 -Plastic HDI

2004 -Ultra-dense 3-D

- Commitment to excellence with game-changing technologies
- A rich legacy of innovation and transition

(HCSM) TRMM, HST Servicing Mission 2, MS1

(VCSEL Module) F-16, JSF

(AIC) DS2, JAWSAT, STRV-1D

Evolution of Packaging Technology

- 2-D
 - multichip modules (MCMs)
 - Dense printed wiring boards
 - BGA, chip-scale packages
- 3-D
 - Stacked die
 - Stacked packages
 - Stackable MCMs

Package Pin Count

The challenge of interconnect

Comparison of integrated circuits in 1986 and 2004

Drawn to the same scale

"Molecules-to-pins" Architecture Reconfigurable Cellular Arrays

A War on Wires

• What can be done?

Nature of Wires

4/3/2007

Wiring Demand Interconnectivity Ranges

fully connected p~1

cellular automata p~0.5

unconnected p~0

Wiring Models

- Random Networks (Erdös-Renya)
- Small-World (Watts-Strogatz)
- Scale-Free (Laszlo-Barabasi)

Scale-Free Networks in VLSI

4/3/2007

Nano-Interconnection Redistribution

Molecular circuitry
Nano-interconnect

Local

Semi-local

Global

Semi-local

Local

VLSI

Simulated Distribution
Based on 3-D nanowire sticks

4/3/2007

Distribution Results Based on Simulation

- 3-D randomized distributions can mimic statistical behavior of complex VLSI systems
- Consistent with scale-free network model (*Barabasi* 2002)

Distribution of Interconnections Science / Engineering of Wiring Systems

4/3/2007

Owczarczak & Lyke (unpublished, 2005)

Interim Summary

- Wiring demand in most systems we care about seems to follow a scale-free distribution
- Can't fight nature?
- If you can't beat them...
 - What can we do to exploit an understanding of the nature of wiring in systems
 - Can we structure wiring supply to follow demand?

4/3/2007

The pursuit of complex systems

The needs of operationally responsive space

Problem Formulation

Create a spacecraft in less than one week

4/3/2007

- Cannot be achieved by "tweaking" existing processes
- Requires fundamentally new approaches
- Standards are not enough

Sources of complexity: TIME DELAYS

- Long lead: Component development
- **Uncertainty: Human errors in interpretation**
- **Long lead: Harnesses**
- Long lead: Software
- Lack of effective modular strategies
- Requirements for precision in assembly, etc. counter to rapid integration

4/3/2007 22

Beating time delay – an example

Integrated Circuit (IC)

Field Programmable Gate Array (FPGA)

Convert one type of time delay into another kind you can deal with!

Opportunities for a "Field-programmable Satellite"

Eliminate wiring harnesses with pre-built programmable wiring

Integrate plug-and-play components into sockets of pre-built panels

Modularize power system components, add "smart combiners"

Programmable communications with software radio technology

Reconfigurability

Flexibility, Scalability, Reliability

The Incubator of New Technology with Established Tech Transitions into Other Branch Programs

Adaptive Manifold

- Objective: Develop important building block for adaptive wiring harness
- Results to date: Demonstration of Adaptive wiring Manifold with > 150 MEMS switches

Modular, Building-block Spacecraft

Plug & Play Components Black Box Objects

"platform" plug-and-play component lectronic datasheet component interface module

What is Plug-and-play

- Plug-and-play is centrally based on smart components
 - Every contains built-in electronic datasheet = xTEDS (XML-based electronic datasheet)
- Components network into a self-organized system

This approach is called "Space Plug-and-play Avionics"

Plug-and-play components – black-box objects

Smart Interface: the Applique Sensor Interface Module (ASIM)

Electronic Interface Descriptions

Plug-and-play Software Layered Model

"Satellite data model" (SDM) created to address mechanisms for making software "plug-and-play" aware

Modular Concept Bus

- Logically extends ideas of plug-and-play to the rest of the satellite
- Standardized Mounting Grid (2" oc, move to 4cm)
- Regular SPA locations
- SPA pre-integrated in panels
- Panels open for easy access

Rapid Assembly, Integration, and Test

Rapid Assembly, Integration, and Test

Observations

- Improve wiring problems through a few simple principles
 - Intelligent modularity
 - Scalable serial interconnect (>> 1Gbps)
- Not all wire is needed all the time
 - Reconfigurable wiring approaches
- Wireless is an encouraging prospect for reducing a lot of the wiring manifold
 - Hard to deliver much power without wires
 - We are considering for support wiring subsystems such as the test bypass networks in SPA
- Distributed Power Management could be a complementary approach

Summary

- Packaging is driven by problems of interconnection
 - Spacecraft, aircraft, etc. are "large packages"
- Nature of wiring seems to follow a scale-free model
 - Not purely a random network
- Can't fight nature, employ a number of techniques to deal with the "war on wires"
 - Modularity (enforces simplicity in interfaces)
 - Reconfigurability (allows repurposing of interconnections)
 - Wireless (allows reduction of wiring manifold)
- Understanding wiring demand and nature of complex systems drives pursuit of intelligent strategies to combat growth in the wiring manifolds of aerospace systems