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• In order for humans to safely explore space across 
great distances and for extended durations, there 
is still much work to be done, and Bioastronautics
– the study of man in space – is the critical path to 
space exploration success
– NASA’s Bioastronautics Roadmap (BR) has 

identified 45 key risks associated with human space 
exploration, and there are many risks associated 
with a manned mission to Mars that have been 
assessed as “high”

– These risks are as diverse as bone demineralization, 
radiation-induced carcinoma, immunodeficiency, 
and reliability of Environmental Control and Life 
Support (ECLS) systems, including Trace 
Contamination (TC) detection and mitigation

The Prospect of Human Space Flight (1/2)
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• Experience on the International Space Station 
(ISS) certainly supports the assessment of these 
risks
– Though various hardware failures and crew health 

issues through the years have been rectified, the 
solutions would not have been possible without 
close proximity to Earth

– As ex-astronaut Bonnie Dunbar has said, “There 
are no Home Depots in space”

– One might add, “There are no Kelsey Seybolds in 
space”

• Sufficiently mitigating these critical risks is a 
matter of life and death

The Prospect of Human Space Flight (2/2)
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• Materials selection will play a critical role in 
mitigating the BR risks

• Among key desired materials characteristics: 
– Radiation shielding
– Mechanical properties, e.g. strength, modulus and 

dimensional stability, MMOD mitigation
– Lightweight
– Low toxic off-gassing
– Flame retardancy and reduced smoke emissions
– Chemical resistance
– Decreased permeability to gases, water and 

hydrocarbons
– Thermal stability
– Multifunctional

The Critical Nature of Materials Selection
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“It is well known that the primary sources of radiation exposure in space 
are Galactic Cosmic Rays (GCRs) and Solar Particle Events (SPEs). 
However, due to a number of independent variables associated with these 
sources, there is uncertainty about the total shielding required for long-
duration missions. Research is needed to confidently predict the 
shielding capabilities of various materials and spacecraft components 
along with corresponding research to understand crew exposure limits. 
Most hydrocarbon-based composites have value as radiation shielding, 
thus many materials (e.g., ones developed for lightweight structures) may 
also be useful for radiation protection.”
−− NASA’s Exploration Systems Architecture Study – Final Report, NASA TM-2005-214062, p. 629, November 
2005 (aka ESAS Report)

Materials: A Radiation Mitigation Perspective (1/3) 
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Materials: A Radiation Mitigation Perspective (2/3) 

• Desired characteristics specific to radiation 
mitigation:
– High hydrogen content
– Minimal secondary particle production, especially 

neutrons
• Suitable materials:

– Aluminum (baseline reference material)
– High-density polyethylene (HDPE)
– Boron- and lithium-doped polymers
– “Graded-Z” materials
– Lithium hydride
– Nanomaterials

• HDPE is currently being used to line Russian 
Segment (RS) sleep quarters to mitigate radiation 
exposure
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Materials: A Radiation Mitigation Perspective (3/3) 

Annual Martian Surface BFO* ExposuresAnnual Lunar Surface GCR BFO* Exposures

* BFO − Blood-Forming Organs

§ Hydrogenated Graphite NanoFiber (HGNF) performance (upon which this data is based) has not yet been duplicated

§ §
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Materials: An Advanced Life Support Perspective

• Desired characteristics specific to Advanced Life 
Support (ALS) – Trace Contaminant (TC) control:
– Low toxic off-gassing
– Flame retardancy and reduced smoke emissions
– Chemical resistance
– Decreased permeability to gases, water and hydrocarbons

• TCs are generated from various sources, e.g.,
– Materials off-gassing

• Structural
• Electrical wiring and electronics

– Compromise of reactant enclosures
– Combustion events
– Human metabolism and pathology

• TC detection, control and analysis is very tenuous for 
long-duration space flight 
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• ECLS system performance is currently very tenuous 
for long-duration space flight

• A selection of recent ISS Failures:
– Repeated CO2 Removal System (CRS) (CDRA (CO2 Removal 

Assembly) and Vozdukh) failures caused by Zeolite dust
• The causes of CDRA failures were not discovered until 

the unit was returned to Earth
• Zeolite CO2 adsorption is a decades-old technology
• Newly-designed CDRA bed delivered, problems continue

– Continued Elektron failures have threatened to place ISS at 
critical O2 reserves

– Major Constituent Analyzer (MCA) failure threatened 
abandonment of ISS

– Volatile Organic Analyzer (VOA) failure
– For extended periods there has been no real-time 

trace contaminant visibility at all

Recent ISS Life Support Anomalies
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• Hundreds of molecular species that are the result 
of ISS off-gassing, human metabolism, etc. are 
considered to be potentially harmful to the crew if 
allowed to accumulate

• The ISS TC Control System (TCCS) as well as 
Condensing Heat Exchangers (CHX) provide TC control

• As noted, TC detection is inconsistent and often non-
existent in ISS
– Aside from major constituents, the Major Constituent 

Analyzer (MCA) tracks CH4 and H2, but output not 
considered at all reliable for these molecules

– The RS equivalent analyzer (ГA) tracks CO, but less is 
known about RS equipment performance

– MCA and VOA have both failed
• No real-time continuous biological detection in ISS

ISS Trace Contamination Control & Detection (1/2) 
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• For example, one of the most problematic TCs has 
been formaldehyde (H2CO)
– It is off-gassed from a variety of sources, as well as 

produced metabolically
– It is among the most toxic TCs
– Ground-based material screening methods are very 

limited in their sensitivity
– For long duration missions, source accumulation 

contributes to generation rate growth that eventually 
overloads active controls

– The technology for real-time monitoring below the 180-day 
SMAC (0.05 mg/m3 – ppb range) is not currently available 
(rather, flight proven?)

– For nine months H2CO concentration (indicated from 
returned air samples) was above the 180-day SMAC, and 
as high as 0.065 mg/m3 (30% above SMAC)

ISS Trace Contamination Control & Detection (2/2) 
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Formaldehyde Concentrations on US and RSS
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• Sample analyses typically suggest all tracked TC 
species below 180-day SMACs (with the exception 
of H2CO)

• However, ISS crew has reported a preference for 
operating both CDRA and Vozdukh during crew 
exchange
– Crew notes a significant increase in “mental clarity”
– Increase in CRS performance accomplishes two things:

• Reduces CO2 concentration (from 5 to 3 mm Hg)
• Increased filtration with both CRS systems operating 

reduces TC concentration
– US and Russian toxicology experts have not suggested 

any synergetic effects of CO2 with total non-methane 
Volatile Organic Carbons (VOCs), humidity, or 
temperature

Ambiguity Regarding Crew Symptoms (1/2) 
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• Flight surgeons have that stated ground tests typically indicate
at least one crewmember (CM) per flight will have sensitivity to
CO2 at concentrations > 3 mm Hg (this is far below the SMAC!)

• But this doesn’t explain why that, according to crew 
reports, the entire crew feels a “significant increase in 
mental clarity” when both CRSs are operating

• If all species are below their SMACs, then why does the crew 
report increased well-being at (perhaps) lower levels of 
concentration?
– Due to microgravity effects (SMACs developed in 1-g)?

• Concentrations are diffusion-driven
• Differences in absorption or reaction at the cellular level

– Rate of increase of CO2 is also a significant factor
• More accurate sensing and improved analysis: a necessity
• No consensus explanation for this phenomenon

Ambiguity Regarding Crew Symptoms (2/2) 
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• The real-time Crewmember–Flight Surgeon–EECOM–
Engineering communication path is virtually non-existent
– Crew sickness during STS-96 (ISS 2A.1) – critical reporting 

to engineering was delayed until post-mission – TC? CO2? 
Humidity? All of the above?

– Similar lack of real-time reporting of crew symptoms during 
recent Orbiter missions to ISS

– Recently an EECOM flight note stated that “Crewmember 
misconfigured EVA tool because of CO2 symptoms” –
jumping to conclusions?

– Very recently (STS-121 (ISS ULF1.1)) reports of crew 
headaches also delayed

• Even in ground tests, e.g., headaches during testing in (old) 
Weightless Environment Training Facility (WETF) unreported

• This communication gap only adds to the problems of 
low detection performance and consequent incomplete 
analysis 

Communication Breakdown 
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• The canary effect – adverse health conditions 
perceived by the crewmember – is often the 
first line of defense

• This is positively unacceptable for long-term, 
long-range space exploration

• Without proper diagnosis:
– There can be no real-time treatment
– There can be no design response

The Future of Manned Space Exploration?
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The Necessity of Diagnostic Data

• A comprehensive and coordinated collection of 
data is required for accurate diagnosis, prognosis 
and treatment
– Stimulus perceived by the human (“canary effect”) is a 

valuable diagnostic tool, but advanced sensing devices 
are needed to detect the presence of chronic or acute 
illness before subject-reported symptoms:
• Increased concentration of trace contaminants or 

their by-products when absorbed by the human 
system

• DNA structure anomalies for early detection of 
radiation-induced carcinoma

• Early presence of pathogens and antigens
• A superior integrated sensing web and diagnostic 

capability is required to yield safe long-range 
manned space exploration
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• Among the critical requirements expressed by NASA 
Space Life Sciences for sensors that will facilitate 
this diagnostic capability:
– Non-invasive
– Portable
– Low mass & volume
– High accuracy
– Rugged and reliable
– Adaptive and intelligent
– Easy to calibrate
– Multifunctional

• Cutting-edge technologies will be required to acquire 
critical information in various in situ settings
– Multifunctional lab-on-chip technologies
– Enabled by microfluidics and nanotechnology

Life Science Sensor Requirements
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Advanced Life Support Sensor Web

CH4

overboard

H2O

Tank

H2

Tank

O2

Tank

N2

Tank

leakage

Crew

leakage

urine

CRS

CO2

Electrolysis

H2

O2

Sabatier

4H2 + CO2 CH4 + 2H2O

H2O

Urine

Processor

H2O

condensate

CHX
Condensate

Processor

H2O

O2 + met CO2 + H2O

7

8

ph M
in

er
al

 A
na

ly
si

s

Pa
th

og
en

s

Tr
ac

e 
C

on
ta

m
in

an
ts

C
O

2 
C

on
ce

nt
ra

tio
n

O
2 

C
on

ce
nt

ra
tio

n

H
2O

 C
on

ce
nt

ra
tio

n

R
ad

ia
tio

n 
D

os
im

et
ry

D
N

A

To
xi

co
lo

gy

B
io

ch
em

is
tr

y

1 Water Tank x x x x
2 Condensing HX Condensate x x x x
3 Urine Processor Effluent x x x x
4 Condensate Processor Effluent x x x x
5 Crew Cabin Air x x x x x
6 Plant Colony Air x x x x x
7 Crew Suit Sensor x x x x
8 Crew (Saliva+Urine+Blood Analysis) x x x

X Sensor

4

2

3

65
1



27 March 2007                Page 22

• However, in order for TC and radiation sensing to 
be most effective, sensor data needs to be mapped 
to the space vehicle or habitat as a function of 
space and time
– This will require position information for each 

crewmember as a function of time
– Complementary Computational Fluid Dynamics 

(CFD) and other 3-D analyses will pinpoint the 
performance of specific systems and possible crew 
health hazards
• Off gassing from surfaces or experiments
• Residue concentrations from combustion events
• Effluents via crew metabolism or pathology
• Radiation mitigation performance as a function of 

material and geometry

Fly-by-Wireless Life Science Sensing
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4-D Mapping for TC and Radiation Analysis
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Fly-by-Wireless for Life Science Conclusions

• The study of TC and radiation exposure mitigation 
on ISS fits very well with NASA’s ISS Utilization Plan

• 4-D mapping each CM’s TC and radiation exposure to the 
ISS will significantly facilitate this study, allowing:
– Advanced knowledge of materials in their in situ

settings
– Provide information necessary for developing related 

countermeasures
– Aid in the development of a 1000-day SMAC, critical 

for long duration manned space exploration
– Provide visibility to and diagnosis of chronic ISS 

concerns
– Provide a solution pathway to ISS and future 

Constellation vehicles for long-term crew health and 
safety
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